S-glutathionylation chemistry in fibrotic lung remodeling

纤维化肺重塑中的 S-谷胱甘肽化学

基本信息

项目摘要

PROJECT SUMMARY It is increasingly recognized that oxidative stress is an important feature in pathophysiology of chronic pulmonary diseases, including asthma, COPD and pulmonary fibrosis. Yet, in spite of some successes in animal studies, clinical trials using antioxidants have been largely ineffective in improving lung function in patients with lung disease, and have not yielded new drugs. Despite these negative clinical trials, it has now become well accepted that oxidants are molecules that carry out important biological functions. My laboratory has discovered that protein S-glutathionylation (PSSG), a redox-based modification of reactive cysteines, plays a critical role in airways remodeling and lung fibrosis. We identified that this process is catalyzed by glutathione S transferase P (GSTP), and reversed by the deglutathionylating enzyme, glutaredoxin-1 (Glrx1) induced de-glutathionylation. The intriguing observations around the GSTP-PSSG-Glrx1 redox axis have formed the foundation for a number of research directions that will be pursued herein. We propose to do so in the setting of interstitial fibrosis and fibrotic remodeling associated with allergic airways disease. The conceptual framework for this R35 over the next seven years consists of five separate goals that include: 1) Identification of redox scaffolds and redox-relay circuits harnessed by scaffolding complexes that encompass peroxiredoxin-4 (Prdx4), GSTP and client proteins that are S-glutathionylated via a redox relay, 2) Avenues to combat protein S-glutathionylation (PSSG) in a target-specific manner by focusing on new avenues for inhibition of GSTP, 3) Understanding mechanisms of cellular uptake/secretion of Glrx1, approaches to modify stability of and deliver Glrx1 to specific cellular compartments to enhance its de-glutathionylating function, 4) Address whether altered inflammatory/immune responses contribute to the diminished fibrogenic response upon attenuation of S-glutathionylation, and 5) Elucidate targets for PSSG in epithelial cells from asthmatics and lung tissues from patients with IPF and address whether strategies to attenuate PSSG diminish pro-inflammatory/pro-remodeling responses in epithelial cells from patients with asthma: The project areas identified have the strong potential to advance our knowledge of how biological oxidations, specifically PSSG, are controlled, with the goal to identify strategies to intervene with protein cysteine oxidations in a target- or compartment-specific manner. The anticipated outcomes will be molecules that are therapeutically applicable and overcome the lack of efficacy observed with the use of non- specific generic antioxidants in the treatment of pulmonary diseases. This research program has the potential to be paradigm-shifting as it changes conventional thinking of how oxidants contribute to lung disease (oxidative stress) toward a paradigm wherein oxidants transduce signals via highly scaffolded “electrical circuits”.
项目概要 人们越来越认识到氧化应激是慢性肺疾病病理生理学的一个重要特征。 然而,尽管在动物研究中取得了一些成功, 使用抗氧化剂的临床试验在改善肺病患者的肺功能方面基本上无效 尽管有这些负面的临床试验,但它现在已被广泛接受。 我的实验室发现氧化剂是具有重要生物功能的分子。 蛋白质 S-谷胱甘肽 (PSSG) 是一种基于氧化还原的反应性半胱氨酸修饰,在 我们发现这一过程是由谷胱甘肽 S 转移酶 P 催化的。 (GSTP),并被去谷胱甘肽酶、谷氧还蛋白-1 (Glrx1) 诱导的去谷胱甘肽逆转。 围绕 GSTP-PSSG-Glrx1 氧化还原轴的有趣观察结果为许多研究奠定了基础 我们建议在间质纤维化和间质纤维化的背景下进行研究。 与过敏性气道疾病相关的纤维化重塑 R35 的概念框架。 未来七年由五个单独的目标组成,其中包括:1)氧化还原支架和氧化还原继电器的识别 由包含 peroxiredoxin-4 (Prdx4)、GSTP 和客户蛋白的支架复合物利用的电路 通过氧化还原继电器进行 S-谷胱甘肽化,2) 对抗蛋白质 S-谷胱甘肽化 (PSSG) 的途径 通过关注抑制 GSTP 的新途径,以特定目标的方式,3) 了解 Glrx1 的细胞摄取/分泌,改变 Glrx1 稳定性并将 Glrx1 递送至特定细胞的方法 隔室以增强其去谷胱甘肽功能,4)解决炎症/免疫是否改变 S-谷胱甘肽化减弱后,反应有助于减少纤维形成反应,5) 阐明哮喘患者上皮细胞和 IPF 患者肺组织中 PSSG 的靶点并解决 减弱 PSSG 的策略是否会减少上皮细胞的促炎症/促重塑反应 来自哮喘患者:所确定的项目领域具有巨大的潜力,可以提高我们对哮喘的认识 如何控制生物氧化,特别是 PSSG,目的是确定干预策略 以靶点或区室特异性方式进行蛋白质半胱氨酸氧化,预期结果将是。 分子可用于治疗并克服使用非药物观察到的功效缺乏 该研究项目有潜力治疗肺部疾病。 是范式转变,因为它改变了氧化剂如何导致肺部疾病的传统思维(氧化 压力)转向氧化剂通过高度支架的“电路”转导信号的范例。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome.
慢性乙醇暴露诱导的线粒体 ROS 促进 NLRP3 炎性体的过度激活。
  • DOI:
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Hoyt, Laura R;Randall, Matthew J;Ather, Jennifer L;DePuccio, Daniel P;Landry, Christopher C;Qian, Xi;Janssen;van der Vliet, Albert;Dixon, Anne E;Amiel, Eyal;Poynter, Matthew E
  • 通讯作者:
    Poynter, Matthew E
Endothelial cell-specific redox gene modulation inhibits angiogenesis but promotes B16F0 tumor growth in mice.
内皮细胞特异性氧化还原基因调节抑制血管生成,但促进小鼠 B16F0 肿瘤生长。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yura, Yoshimitsu;Chong, Brian S H;Johnson, Ryan D;Watanabe, Yosuke;Tsukahara, Yuko;Ferran, Beatriz;Murdoch, Colin E;Behring, Jessica B;McComb, Mark E;Costello, Catherine E;Janssen;Cohen, Richard A;Bachschmid, Markus M;Ma
  • 通讯作者:
    Ma
Involvement of c-Jun N-Terminal Kinase in TNF-α-Driven Remodeling.
c-Jun N 末端激酶参与 TNF-α 驱动的重塑。
  • DOI:
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Eurlings, Irene M J;Reynaert, Niki L;van de Wetering, Cheryl;Aesif, Scott W;Mercken, Evi M;de Cabo, Rafael;van der Velden, Jos L;Janssen;Wouters, Emiel F M;Dentener, Mieke A
  • 通讯作者:
    Dentener, Mieke A
The Flow-Volume Loop: Always an Inspiration!
流量-体积循环:始终是一种灵感!
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Irvin; Charles G
  • 通讯作者:
    Charles G
S-Glutathionylation-Controlled Apoptosis of Lung Epithelial Cells; Potential Implications for Lung Fibrosis.
S-谷胱甘肽化控制的肺上皮细胞凋亡;
  • DOI:
  • 发表时间:
    2022-09-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Corteselli, Elizabeth;Aboushousha, Reem;Janssen
  • 通讯作者:
    Janssen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yvonne M. W. Janssen-Heininger其他文献

Yvonne M. W. Janssen-Heininger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yvonne M. W. Janssen-Heininger', 18)}}的其他基金

Glutaredoxin, Glutathione Metabolism and Lung Cancer
谷氧还蛋白、谷胱甘肽代谢与肺癌
  • 批准号:
    10657945
  • 财政年份:
    2023
  • 资助金额:
    $ 92.76万
  • 项目类别:
Collagen Oxidation, Myofibroblast Activation and Age-Associated Pulmonary Fibrosis
胶原蛋白氧化、肌成纤维细胞激活和年龄相关性肺纤维化
  • 批准号:
    10532853
  • 财政年份:
    2022
  • 资助金额:
    $ 92.76万
  • 项目类别:
Collagen Oxidation, Myofibroblast Activation and Age-Associated Pulmonary Fibrosis
胶原蛋白氧化、肌成纤维细胞激活和年龄相关性肺纤维化
  • 批准号:
    10445737
  • 财政年份:
    2021
  • 资助金额:
    $ 92.76万
  • 项目类别:
2020 Oxygen Radicals Gordon Research Conference (GRC) and Gordon Research Seminar (GRS)
2020年氧自由基戈登研究会议(GRC)和戈登研究研讨会(GRS)
  • 批准号:
    9912443
  • 财政年份:
    2020
  • 资助金额:
    $ 92.76万
  • 项目类别:
S-glutathionylation chemistry in fibrotic lung remodeling
纤维化肺重塑中的 S-谷胱甘肽化学
  • 批准号:
    10320789
  • 财政年份:
    2017
  • 资助金额:
    $ 92.76万
  • 项目类别:
Redox-based Fas signaling in allergic airway disease
过敏性气道疾病中基于氧化还原的 Fas 信号传导
  • 批准号:
    7822474
  • 财政年份:
    2009
  • 资助金额:
    $ 92.76万
  • 项目类别:
Epithelial JNK-TGFb1 Signaling Axis in Airway Remodeling
气道重塑中的上皮 JNK-TGFb1 信号轴
  • 批准号:
    8459777
  • 财政年份:
    2008
  • 资助金额:
    $ 92.76万
  • 项目类别:
Epithelial JNK-TGFb1 Signaling Axis in Airway Remodeling
气道重塑中的上皮 JNK-TGFb1 信号轴
  • 批准号:
    8792545
  • 财政年份:
    2008
  • 资助金额:
    $ 92.76万
  • 项目类别:
Epithelial JNK-TGFb1 Signaling Axis in Airway Remodeling
气道重塑中的上皮 JNK-TGFb1 信号轴
  • 批准号:
    7644952
  • 财政年份:
    2008
  • 资助金额:
    $ 92.76万
  • 项目类别:
Epithelial JNK-TGFb1 Signaling Axis in Airway Remodeling
气道重塑中的上皮 JNK-TGFb1 信号轴
  • 批准号:
    7367482
  • 财政年份:
    2008
  • 资助金额:
    $ 92.76万
  • 项目类别:

相似国自然基金

动物双歧杆菌对不同聚合度低聚木糖同化差异性的分子机制研究
  • 批准号:
    32302789
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
  • 批准号:
    32330014
  • 批准年份:
    2023
  • 资助金额:
    215 万元
  • 项目类别:
    重点项目
以秀丽隐杆线虫为例探究动物在不同时间尺度行为的神经基础
  • 批准号:
    32300829
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
城市化对土壤动物宿主-寄生虫关系的影响机制研究
  • 批准号:
    32301430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
城市河流底栖动物性状β多样性的空间格局及群落构建研究
  • 批准号:
    32301334
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elucidation of mitochondrial mechanisms critical to mediating PFAS neurotoxicity
阐明对介导 PFAS 神经毒性至关重要的线粒体机制
  • 批准号:
    10805097
  • 财政年份:
    2023
  • 资助金额:
    $ 92.76万
  • 项目类别:
Uncovering mechanisms of pancreatic adaptability to weight cycling
揭示胰腺对体重循环的适应性机制
  • 批准号:
    10722086
  • 财政年份:
    2023
  • 资助金额:
    $ 92.76万
  • 项目类别:
Title: In Vitro Analysis of the Effects of Acute and Chronic Phthalate Exposures on Leydig Cell Testosterone Production, and the Molecular Mechanisms Involved
标题:急性和慢性邻苯二甲酸盐暴露对间质细胞睾酮产生的影响以及所涉及的分子机制的体外分析
  • 批准号:
    10730350
  • 财政年份:
    2023
  • 资助金额:
    $ 92.76万
  • 项目类别:
MRI Study of Hydrogen Water and Minocycline Combination Therapy for Ischemic Stroke
氢水与米诺环素联合治疗缺血性中风的MRI研究
  • 批准号:
    10564735
  • 财政年份:
    2023
  • 资助金额:
    $ 92.76万
  • 项目类别:
N-acetylserotonin alleviates neurotoxicity in alcohol misuse following TBI
N-乙酰血清素可减轻 TBI 后酒精滥用造成的神经毒性
  • 批准号:
    10591834
  • 财政年份:
    2023
  • 资助金额:
    $ 92.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了