Uncovering mechanisms of pancreatic adaptability to weight cycling
揭示胰腺对体重循环的适应性机制
基本信息
- 批准号:10722086
- 负责人:
- 金额:$ 12.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-16 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimalsAntioxidantsAutomobile DrivingBeta CellBiological AssayBlood GlucoseBlood capillariesBlood flowBody WeightBody Weight decreasedCaloric RestrictionCardiometabolic DiseaseCell RespirationCell SurvivalCell physiologyCellsChronicCitric Acid CycleClosure by clampCompensationComplexCoupledCouplingCrista ampullarisDataDevelopmentDiabetes MellitusDietDiseaseEffectivenessExocytosisFree RadicalsFunctional disorderGlucoseGlucose ClampGlucose IntoleranceGlyceridesGoalsHemorrhageHigh Fat DietHormonesHumanHyperglycemiaHyperinsulinismImpairmentIndividualInsulinInsulin ResistanceInterventionIslets of Langerhans TransplantationIsotopesKnowledgeLabelLinkLongevityMeasuresMembraneMetabolicMetabolic DiseasesMetabolismMitochondriaMitochondrial SwellingModificationMorphologyMusNon-Insulin-Dependent Diabetes MellitusNutrientNutrient availabilityObese MiceObesityOvernutritionOxidation-ReductionOxidative StressPancreasPatternPeripheralPhysiologicalPotassium ChannelProductionReactive Oxygen SpeciesRegulationResolutionRiskRisk FactorsRodentSamplingSignal TransductionStructureStructure of beta Cell of isletTXNIP geneTechniquesTestingThinnessTracerTransplantationWeightWeight Gainattenuationblood glucose regulationdiet-induced obesityenergy balanceeuglycemiaexperimental studygenetic signatureglucose toleranceimprovedin vivoindexinginnovationinsulin secretioninsulin sensitivityintravenous glucose tolerance testisletmass spectrometric imagingmitochondrial metabolismmouse modelnutrient metabolismpharmacologicrespiratoryresponsesmall molecule inhibitorstable isotopeweight maintenance
项目摘要
Project Summary
Obesity is a risk factor for the development of insulin resistance (IR), a hallmark of type 2 diabetes (T2D). Weight
loss improves obesity-evoked IR; however, the majority of individuals who lose weight, regain the weight within
1-5 years. This ‘weight cycling’ further increases risk of metabolic disease compared to weight maintenance. Our
group developed a mouse model of weight cycling to uncover mechanisms by which weight regain poses
additional risk of metabolic disease. We show that weight cycled diet-induced obese (WC-DIO) animals have
worsened glucose tolerance than equally obese mice that have not weight cycled. A unique finding is that glucose
intolerance in WC-DIO mice is linked to impaired insulin secretion (in vivo during a hyperglycemic clamp and ex
vivo in perifused islets). This key finding indicates that β-cell compensation fails to completely adapt to the
physiological IR evoked by weight regain in the same way it does during the first bout of weight gain. At the
cellular level, WC-DIO mice manifest with atypical β-cell mitochondrial morphology and decreases in gene
signatures linked with mitophagy, redox metabolism, and TCA cycle regulation. Mitochondrial metabolism is
fundamental for normal nutrient stimulated insulin secretion. Thus, the mitochondrial alterations evoked by
weight cycling support a mechanism for impaired insulin secretion. Poor functioning mitochondria are also linked
with disruptions to redox control, which can increase oxidative stress and impair β-cell function. We find that a
major regulator of pro-oxidant status in β-cells, thioredoxin interacting protein (TXNIP), is increased in WC-DIO
islets and inversely associates with insulin secretion. Together, these preliminary studies support that in
response to repeated nutrient overload, β-cells are less efficient at coupling metabolic processes to insulin
secretion. The central hypothesis is that repeated nutrient overload decreases mitochondrial function and evokes
oxidative impairment in β-cells. This loss of β-cell adaptation to nutrient overload impairs insulin secretion and in
vivo glucose regulation. This proposal will: i) determine whether impaired mitochondrial function evoked by
repeated nutrient excess is central to loss of pancreatic function and ii) examine whether TXNIP is responsible
for driving oxidative stress and loss of pancreatic function with weight cycling. Stable isotopes will be used to
measure metabolic flux rates in isolated islets. 13C-labeled metabolites will be administered in vivo and
incorporation in β-cells quantified using imaging mass spectrometry. Pharmacological inhibition and β-cell
specific deletion of TXNIP will be used to determine whether attenuation of oxidative stress restores insulin
production and secretion. In vivo insulin secretion and insulin sensitivity will be determined using the frequently-
sampled intravenous glucose tolerance test coupled with glucose tracers to quantify glucose fluxes. Ex vivo islet
function will be determined in static culture and in perifusion assays. The experiments proposed herein will define
the means by which weight cycling uncouples peripheral IR from pancreatic insulin demand, which will lead to a
better understanding of the underlying mechanisms of pancreatic adaptability to excess nutrients.
项目概要
肥胖是发生胰岛素抵抗 (IR) 的危险因素,而胰岛素抵抗是 2 型糖尿病 (T2D) 的标志。
减轻体重可改善肥胖引起的 IR;然而,大多数减肥者的体重会在短时间内反弹。
与维持体重相比,这种“体重循环”进一步增加了代谢疾病的风险。
研究小组开发了体重循环的小鼠模型,以揭示体重恢复的机制
我们发现体重循环饮食诱导的肥胖(WC-DIO)动物具有额外的代谢疾病风险。
与未进行体重循环的同等肥胖小鼠相比,葡萄糖耐量加快了一个独特的发现是葡萄糖。
WC-DIO 小鼠的不耐受与胰岛素分泌受损有关(在体内高血糖钳夹和前
这一关键发现表明 β 细胞补偿未能完全适应。
体重恢复引起的生理IR与第一次体重增加时的情况相同。
细胞水平上,WC-DIO小鼠表现出非典型的β细胞线粒体形态和基因减少
与线粒体自噬、氧化还原代谢和 TCA 循环调节相关的特征是。
因此,线粒体的改变是正常营养刺激胰岛素分泌的基础。
体重循环支持胰岛素分泌受损的机制也与线粒体功能不良有关。
氧化还原控制被破坏,这会增加氧化应激并损害 β 细胞功能。
β 细胞促氧化状态的主要调节因子硫氧还蛋白相互作用蛋白 (TXNIP) 在 WC-DIO 中增加
胰岛和胰岛素分泌呈负相关,这些初步研究支持了这一点。
由于对重复的营养超载的反应,β细胞在将代谢过程与胰岛素耦合方面效率较低
中心假设是重复的营养超载会降低线粒体功能并诱发线粒体功能。
β 细胞氧化损伤 β 细胞对营养超负荷的适应能力丧失会损害胰岛素分泌。
体内葡萄糖调节。该提案将: i) 确定线粒体功能是否由以下因素引起:
重复的营养过剩是胰腺功能丧失的核心,ii) 检查 TXNIP 是否是造成这种情况的原因
用于通过体重循环驱动氧化应激和胰腺功能丧失。
测量分离胰岛的代谢通量率,将在体内施用 13C 标记的代谢物。
使用成像质谱法对 β 细胞中的掺入进行定量。
TXNIP的特异性删除将用于确定氧化应激的减弱是否可以恢复胰岛素
体内胰岛素分泌和胰岛素敏感性将使用经常确定的。
取样静脉内葡萄糖耐量测试与葡萄糖示踪剂结合以量化离体胰岛。
功能将在静态培养和灌注测定中确定,本文提出的实验将定义。
体重循环将外周IR与胰腺胰岛素需求分开的方法,这将导致
更好地了解胰腺适应过量营养的潜在机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan C Winn其他文献
Nathan C Winn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Fosl2调控染色质开放性在哺乳动物卵丘-卵母细胞复合物成熟过程中的机制研究
- 批准号:82301863
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
H5亚型禽流感病毒PA蛋白诱导降解JAK1增强病毒对哺乳动物致病性的作用及机制研究
- 批准号:32373042
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
动物双歧杆菌对不同聚合度低聚木糖同化差异性的分子机制研究
- 批准号:32302789
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
相似海外基金
Elucidation of mitochondrial mechanisms critical to mediating PFAS neurotoxicity
阐明对介导 PFAS 神经毒性至关重要的线粒体机制
- 批准号:
10805097 - 财政年份:2023
- 资助金额:
$ 12.21万 - 项目类别:
Title: In Vitro Analysis of the Effects of Acute and Chronic Phthalate Exposures on Leydig Cell Testosterone Production, and the Molecular Mechanisms Involved
标题:急性和慢性邻苯二甲酸盐暴露对间质细胞睾酮产生的影响以及所涉及的分子机制的体外分析
- 批准号:
10730350 - 财政年份:2023
- 资助金额:
$ 12.21万 - 项目类别:
MRI Study of Hydrogen Water and Minocycline Combination Therapy for Ischemic Stroke
氢水与米诺环素联合治疗缺血性中风的MRI研究
- 批准号:
10564735 - 财政年份:2023
- 资助金额:
$ 12.21万 - 项目类别:
N-acetylserotonin alleviates neurotoxicity in alcohol misuse following TBI
N-乙酰血清素可减轻 TBI 后酒精滥用造成的神经毒性
- 批准号:
10591834 - 财政年份:2023
- 资助金额:
$ 12.21万 - 项目类别:
Social regulation of oxidative stress in the brain
大脑氧化应激的社会调节
- 批准号:
10730899 - 财政年份:2023
- 资助金额:
$ 12.21万 - 项目类别: