Dendritic upconverting nanoparticles for multiphoton imaging and sensing
用于多光子成像和传感的树突上转换纳米颗粒
基本信息
- 批准号:8932692
- 负责人:
- 金额:$ 35.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-24 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAngiographyArchitectureBackBindingBiocompatibleBiologicalBiological ProcessBlood flowBrainCerebrovascular CirculationCerebrumCoupledDendrimersDetectionDyesElectric StimulationEnergy TransferEvaluationFluorescenceFrequenciesFunctional Magnetic Resonance ImagingGoalsHealthImageImageryImaging TechniquesIonsLanthanoid Series ElementsLasersLigandsLightMeasurementMethodsMicroscopicMicroscopyModificationMorphologyMusNeurosciencesOpticsOxygenPartial PressurePhotonsPhysiologic pulsePhysiologicalPilot ProjectsPosterior Pituitary GlandProblem SolvingPropertyRadiationResolutionRiskRodentRodent ModelRouteSamplingSchemeShapesSignal TransductionSolutionsSourceStrokeSurfaceTechnologyTestingTimeTissuesToxic effectVariantVesicleVisible RadiationWaterabsorptionbasebioimagingblood rheologycarboxylatechemical propertychromophorecostdesignextracellularfeedingimaging modalityimaging probein vivoluminescencemacromoleculenanoparticleneurotransmitter releasepreventratiometricresearch studytwo-photon
项目摘要
DESCRIPTION (provided by applicant): In this project we address the need in probes for two-photon microscopy - the leading imaging technique for dynamic visualization and quantification of biological processes in vivo in 3D with micron-scale spatial resolution. We propose to develop a new class of multiphoton probes, termed dendritic UCNPs, which comprise lanthanide-based up converting nanoparticles (UCNPs) and dendritic ligands. The key advantage of UCNPs is their enormously high multiphoton absorption cross-sections, which exceed those of the most efficient multiphoton probes available today by several orders of magnitude. Recently, we demonstrated that due to this remarkable property, in vivo two-photon depth-resolved microscopic imaging with UCNPs can be accomplished using simple low-power continuous-wave (CW) infrared light sources, which is in contrast to conventional two-photon experiments requiring very expensive pulsed femtosecond lasers. This remarkable advantage comes on top of other benefits of UCNPs, which include record-high photo stability, zero background fluorescence (due to CW infrared excitation) and greatly diminished risk of photo damage. However, lack of robust methods of UCNP solubilization and functionalization has been a major obstacle preventing their inclusion into the toolkit of modern imaging methods. We propose to solve this problem by using dendritic macromolecules. Our key proposition is that modification of UCNP surfaces with hydrophilic shape-persistent dendrimers will make up an efficient and general route to soluble bio-compatible UCNPs, whose luminescence will be coupled to analyte detection via UCNP-to-dendrimer excitation energy transfer (EET). Our approach capitalizes on unique structural features of dendritic architecture, i.e. intrinsic polyvalency and pseudo- globular shape. Both "colorless" probes for morphologic angiographic two-photon imaging and dedicated probes for imaging of specific analytes (pH and Ca2+) will be developed. To test the probes we will perform: (a) angiographic imaging in vivo in rodent brain, determining changes in blood rheology upon functional stimulation; (b) simultaneous in vivo multiphoton imaging of alterations in tissue pH and partial pressure of oxygen (pO2) in stroke rodent models; d) imaging of extracellular Ca2+ flux in mouse neurohypophysis upon electrical stimulation. All these experiments will differ from conventional multiphoton imaging in that the cost of the excitation sources will be lower by ca 1000 fold. These applications will demonstrate the ability of the new probes to a) replace currently used expensive multiphoton setups; and b) go beyond and address questions and hypotheses in neuroscience for which no alternative solutions are currently available.
描述(由申请人提供):在此项目中,我们解决了两光子显微镜的探针中的需求 - 用于动态可视化和定量体内生物学过程的领先成像技术,并以微米尺度的空间分辨率在3D中。我们建议开发一种新的多光子探针,称为树突UCNP,该探针包括基于灯笼的纳米颗粒(UCNPS)和树突状配体。 UCNP的关键优点是它们极高的多光子吸收横截面,超过了当今最有效的多光子探针的横截面。 Recently, we demonstrated that due to this remarkable property, in vivo two-photon depth-resolved microscopic imaging with UCNPs can be accomplished using simple low-power continuous-wave (CW) infrared light sources, which is in contrast to conventional two-photon experiments requiring very expensive pulsed femtosecond lasers.这种显着的优势取决于UCNP的其他好处,其中包括创纪录的照片稳定性,零背景荧光(由于CW红外激发)以及造成照片损害的风险大大降低。但是,缺乏UCNP溶解化和功能化的强大方法一直是一个主要障碍,无法将其纳入现代成像方法的工具包。我们建议通过使用树突大分子来解决这个问题。我们的关键主张是,用亲水性形状抗性树枝状聚合物对UCNP表面进行修饰将构成一种有效且一般的途径,以通过UCNP-TO-TO-DENDENDRIMER激发能量转移(EET)耦合到可溶性生物兼容的UCNP。我们的方法利用了树突结构的独特结构特征,即内在的多性价和伪球形。形态血管造影两光子成像的“无色”探针和用于特定分析物(pH和Ca2+)成像的专用探针都将开发。为了测试我们将执行的探针:(a)啮齿动物大脑中体内的血管造影成像,确定功能刺激时血流变学的变化; (b)同时在中风啮齿动物模型中的组织pH和氧气压力(PO2)变化的体内多光子成像; d)在电刺激时,小鼠神经触及旋转中细胞外Ca2+通量的成像。所有这些实验都将与常规多光子成像不同,因为激发源的成本将降低Ca 1000倍。这些应用程序将证明新探针对a)替换当前使用的昂贵多光子设置的能力; b)超越并解决了当前没有其他解决方案的神经科学中的问题和假设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SERGEI VINOGRADOV其他文献
SERGEI VINOGRADOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SERGEI VINOGRADOV', 18)}}的其他基金
Dendritic upconverting nanoparticles for multiphoton imaging and sensing
用于多光子成像和传感的树突上转换纳米颗粒
- 批准号:
8815403 - 财政年份:2014
- 资助金额:
$ 35.72万 - 项目类别:
DENDRITIC OXYGEN SENSOR WITH TWO-PHOTON ABSORBING ANTENNA
具有双光子吸收天线的树枝状氧传感器
- 批准号:
8362568 - 财政年份:2011
- 资助金额:
$ 35.72万 - 项目类别:
DENDRITIC OXYGEN SENSOR WITH TWO-PHOTON ABSORBING ANTENNA
具有双光子吸收天线的树枝状氧传感器
- 批准号:
8169540 - 财政年份:2010
- 资助金额:
$ 35.72万 - 项目类别:
DENDRITIC OXYGEN SENSOR WITH TWO-PHOTON ABSORBING ANTENNA
带双光子吸收天线的树枝状氧传感器
- 批准号:
7955437 - 财政年份:2009
- 资助金额:
$ 35.72万 - 项目类别:
DENDRITIC OXYGEN SENSOR WITH TWO-PHOTON ABSORBING ANTENNA
带双光子吸收天线的树枝状氧传感器
- 批准号:
7723846 - 财政年份:2008
- 资助金额:
$ 35.72万 - 项目类别:
Oxygen microscopy by two-photon excited phosphorescence
双光子激发磷光氧气显微镜
- 批准号:
7568976 - 财政年份:2007
- 资助金额:
$ 35.72万 - 项目类别:
相似国自然基金
冠状小微血管超声微泡造影多灌注峰参量三维高时空分辨成像
- 批准号:12374444
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
针对活体微血管成像的时空融合运动衬度X射线造影术
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声造影血流灌注智能定量系统明确血管正常化“窗口期”提升肺癌免疫检查点抑制剂疗效的研究
- 批准号:82272007
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
超声造影评价SOCS3通过miRNAs靶向介导的自噬途径调控血管新生对缺血性脑卒中的作用研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超声造影评价SOCS3通过miRNAs靶向介导的自噬途径调控血管新生对缺血性脑卒中的作用研究
- 批准号:82202158
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 35.72万 - 项目类别:
Platelet Expression of FcgammaRIIa and Arterial Hemodynamics to Predict Recurrent Stroke in Intracranial Atherosclerosis
FcgammaRIIa 的血小板表达和动脉血流动力学预测颅内动脉粥样硬化复发性中风
- 批准号:
10588179 - 财政年份:2022
- 资助金额:
$ 35.72万 - 项目类别:
Platelet Expression of FcgammaRIIa and Arterial Hemodynamics to Predict Recurrent Stroke in Intracranial Atherosclerosis
FcgammaRIIa 的血小板表达和动脉血流动力学预测颅内动脉粥样硬化复发性中风
- 批准号:
10444288 - 财政年份:2022
- 资助金额:
$ 35.72万 - 项目类别:
Deep Learning Enabled Endovascular Stroke Therapy Screening in Community Hospitals
深度学习支持社区医院的血管内卒中治疗筛查
- 批准号:
10184809 - 财政年份:2021
- 资助金额:
$ 35.72万 - 项目类别:
Cross-species vascular anatomy and sensitivity to intraocular pressure in glaucoma
青光眼的跨物种血管解剖学和对眼压的敏感性
- 批准号:
10493356 - 财政年份:2021
- 资助金额:
$ 35.72万 - 项目类别: