Deep Learning Enabled Endovascular Stroke Therapy Screening in Community Hospitals
深度学习支持社区医院的血管内卒中治疗筛查
基本信息
- 批准号:10184809
- 负责人:
- 金额:$ 48.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAgeAlgorithmsAngiographyArchitectureBlindedBrain InjuriesBypassCaliforniaCaringCause of DeathCessation of lifeClinicalClinical DataClinical TrialsCommunitiesCommunity HospitalsComputer softwareCountryDataData SetDatabasesDependenceDetectionDevelopmentEligibility DeterminationEvaluationFoundationsFutureGoalsGuidelinesHeterogeneityHospital ReferralsHospitalsHourHumanImageIndustry StandardInfarctionInfrastructureInstitutionInterventionIntravenousIonizing radiationIschemic StrokeLocationMachine LearningMagnetic Resonance ImagingMedicalMethodsModalityModelingNeurological outcomeOutcomePatient imagingPatient-Focused OutcomesPatientsPerformancePerfusionPopulation HeterogeneityProceduresProtocols documentationRaceRadiation exposureReaderReproducibilityResearchRiskRouteServicesSoftware ToolsSourceStrokeSystemTestingTexasTherapy EvaluationTimeTissuesTrainingUnited StatesValidationbasebiomedical referral centerbrain tissuecare deliverycommunity centercostdeep learningdeep neural networkdisabilityheterogenous dataimaging capabilitiesimaging modalityimprovedloss of functionmultimodalitymultiple datasetsneural network architectureneuroimagingnovelnovel strategiespatient screeningperfusion imagingpost strokepredictive modelingprototypescreeningsexstroke patientstroke therapysuccesssupport toolsthrombolysistool
项目摘要
Project Summary/Abstract
Stroke is the 5th leading cause of death in the United States. Endovascular stroke therapy (EST) has
revolutionized the management of large vessel occlusion (LVO) acute ischemic stroke (AIS), which accounts
for a disproportionate amount of disability in stroke. While this therapy has been shown to significantly improve
clinical outcomes in multiple clinical trials, these studies nearly all required screening patients with advanced
NeuroImaging such as CT Perfusion (CTP), a modality not available to the majority of community hospitals. As
such, there is a pressing need to for a tool able to identify EST candidates leveraging the infrastructure already
existing in community hospitals. We envision a software-based service to automate the NeuroImaging
evaluation for EST using CT angiography (CTA). We developed and tested a prototype of a novel deep neural
network architecture called DeepSymNet. Our preliminary data indicate that uniquely using CTAs we can
determine (1) the presence or absence of a large vessel occlusion (2) if the extent of ischemic core and (3)
volume of tissue “at risk” (penumbra) is above or below the thresholds used in the clinical trials, when
compared to concurrently obtained results using CTP.
We will pursue our project goal with three aims:
- Aim 1 - Establish one of the largest multi-institution dataset for neuro-imaging research in acute ischemic
stroke. We will acquire a multi-center dataset including imaging and clinical data from 15 hospitals across
Texas and California, from a range of scanners, imaging acquisition protocols, and hospital types (i.e. large
academic and smaller community).
- Aim 2 - Develop interpretable deep learning models to determine the eligibility for EST. We will methodically
test a set of model architectures, data augmentation strategies, loss functions and pre-processing steps based
on DeepSymNet. We will train and test the algorithm against various definitions of infarct core and penumbral
volume based on CTP results. This approach will allow for models adaptable to the everchanging definition of
EST eligibility.
– Aim 3 - Evaluate the external validity of DeepSymNet-based models on a large multi-center independent
dataset. To accomplish this aim, we will deploy our DeepSymNet software on patient imaging and data from
multiple hospitals, which were not used in the creation of the software. We will also validate our approach of
using CTA alone to determine ischemic core by validating blinded reads of infarct core from CTA source
images performed by expert readers against concurrently acquired CTP results.
Completion of these aims will have a sustained, transformative impact by supporting the creation and
validation of decision support tools readily translatable to the patient bedside in the vast majority of community
hospitals across the country. In doing so, we hope to expand the access to high-quality EST screening to
thousands of additional AIS patients.
项目概要/摘要
中风是美国第五大死亡原因。
彻底改变了大血管闭塞 (LVO) 急性缺血性中风 (AIS) 的治疗,这说明
虽然这种疗法已被证明可以显着改善中风造成的残疾。
在多项临床试验中的临床结果中,这些研究几乎都需要筛查晚期患者
神经影像,例如 CT 灌注 (CTP),这种模式大多数社区医院都无法使用。
因此,迫切需要一种能够利用现有基础设施识别 EST 候选者的工具
我们设想一种基于软件的服务来实现神经影像的自动化。
我们开发并测试了一种新型深度神经网络的原型。
我们的初步数据表明,我们可以通过独特的 CTA 来实现称为 DeepSymNet 的网络架构。
确定 (1) 是否存在大血管闭塞 (2) 核心缺血程度以及 (3)
当“处于风险”(半影)的组织体积高于或低于临床试验中使用的阈值时
与使用 CTP 同时获得的结果进行比较。
我们将通过三个目标来实现我们的项目目标:
- 目标 1 - 建立最大的多机构数据集之一,用于急性缺血性神经影像研究
我们将获取包括来自 15 家医院的影像和临床数据的多中心数据集。
德克萨斯州和加利福尼亚州,来自一系列扫描仪、成像采集协议和医院类型(即大型医院)
学术界和较小的社区)。
- 目标 2 - 开发可解释的深度学习模型来确定 EST 的资格。
测试一组模型架构、数据增强策略、损失函数和预处理步骤
在 DeepSymNet 上,我们将根据梗塞核心和半影的各种定义来训练和测试算法。
这种方法将允许模型适应不断变化的定义。
EST 资格。
– 目标 3 - 评估基于 DeepSymNet 的模型在大型多中心独立模型上的外部有效性
为了实现这一目标,我们将在患者成像和数据上部署 DeepSymNet 软件。
我们还将验证我们的方法,这些医院在创建软件时未使用。
单独使用 CTA 通过验证来自 CTA 源的梗塞核心的盲读来确定缺血核心
由专家读者根据同时获取的 CTP 结果执行的图像。
完成这些目标将通过支持创造和发展产生持续的、变革性的影响。
验证决策支持工具可轻松应用于绝大多数社区的患者床边
在此过程中,我们希望扩大高质量 EST 筛查的覆盖范围。
数千名额外的 AIS 患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LUCA GIANCARDO其他文献
LUCA GIANCARDO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LUCA GIANCARDO', 18)}}的其他基金
Deep Learning Enabled Endovascular Stroke Therapy Screening in Community Hospitals
深度学习支持社区医院的血管内卒中治疗筛查
- 批准号:
10381665 - 财政年份:2021
- 资助金额:
$ 48.14万 - 项目类别:
Deep Learning Enabled Endovascular Stroke Therapy Screening in Community Hospitals
深度学习支持社区医院的血管内卒中治疗筛查
- 批准号:
10611470 - 财政年份:2021
- 资助金额:
$ 48.14万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 48.14万 - 项目类别:
Early life bladder inflammatory events in female mice lead to subsequent LUTS in adulthood
雌性小鼠生命早期的膀胱炎症事件导致成年后的 LUTS
- 批准号:
10638866 - 财政年份:2023
- 资助金额:
$ 48.14万 - 项目类别:
Mechanisms of Juvenile Neurogenesis and Post-Stroke Recovery: Determining the Role of Age-Associated Neuroimmune Interactions
青少年神经发生和中风后恢复的机制:确定与年龄相关的神经免疫相互作用的作用
- 批准号:
10637874 - 财政年份:2023
- 资助金额:
$ 48.14万 - 项目类别:
Mucosal immunity to sapovirus in early childhood
幼儿期对沙波病毒的粘膜免疫
- 批准号:
10677051 - 财政年份:2023
- 资助金额:
$ 48.14万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 48.14万 - 项目类别: