Oxygen imaging by phosphorescence quenching
磷光猝灭氧气成像
基本信息
- 批准号:10653893
- 负责人:
- 金额:$ 30.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdoptedAdoptionAreaBenchmarkingBioenergeticsBiologyBlood TransfusionCell Culture TechniquesCellular Metabolic ProcessChemistryClinicClinicalCollaborationsCommunitiesComputer softwareConsultationsConsumptionData AnalysesData CollectionDiseaseFiber OpticsFutureGrantHealthHeartHematopoiesisImageImmunologicsInternetJournalsKnowledgeLaboratoriesLinkMeasurementMeasuresMetabolismMethodsMicroscopicMicroscopyMonitorNamesNational Institute of Neurological Disorders and StrokeNatureNeurosciencesNeurosciences ResearchOphthalmologyOxygenOxygen saturation measurementPUVA PhotochemotherapyPaperPathway interactionsPennsylvaniaPerformancePhysiologicalPlayProductivityProtocols documentationPublicationsRadiation therapyRecording of previous eventsResearchResearch PersonnelResolutionResourcesRoleRunningScanningSiteStrokeSystemTechniquesTechnologyTemperatureTimeTissue EngineeringTissue TherapyTissuesTrainingTraumaTumor BiologyUnited States National Institutes of HealthUniversitiesVariantVisitWorkbasebiological systemsbiomedical imagingbone engineeringcancer therapycommercializationdata acquisitiondocument outlinesexperienceexperimental studyinstrumentinterestlarge scale productionluminescencemanufacturing scale-upmedical attentionmedical schoolsmethod developmentminimally invasiveopen sourceoptical fiberphosphorescencepre-clinicalprogramsquantitative imagingscale upsoftware developmentstem cell biologysymposiumtissue oxygenationtissue regenerationtomographytumor immunologytwo-photonweb site
项目摘要
A Resource for Oxygen Imaging by Phosphorescence Quenching
Project Summary
Real-time, minimally invasive and spatially resolved measurements of tissue oxygenation have the
potential to transform our understanding of many clinical problems, including those in tumor biology,
management of stroke, ophthalmology, tissue regeneration, to name a few. Over the years our laboratory has
developed a minimally invasive method for dynamic imaging of oxygen in biological systems, known as
phosphorescence quenching oximetry. Recently, the method has been expanded by two-photon
phosphorescence lifetime microscopy (2PLM), enabling dynamic imaging of oxygen gradients in tissues in 3D
with micron-scale resolution, opening new horizons for research in neuroscience, stem cell biology, cancer
immunology, tissue engineering and several other areas. Even more recently, the combination of
phosphorescence with Cherenkov-Excited Luminescence Scanned Imaging (CELSI) enabled tomography of
oxygen in 3D in pre-clinical setting in tissues undergoing radiation therapy. At the same time,
phosphorescence-based oximetry is increasingly drawing attention from the medical community for its potential
to directly evaluate physiologic status of tissue under trauma, optimize efficacy of blood transfusion as well as
a marker in monitoring progress of photodynamic and radiation therapies. These and other applications have
set the stage for broad dissemination of the phosphorescence technology across different biomedical fields.
At the heart of the phosphorescence quenching method are special oxygen probes, developed and
continuously optimized in our laboratory. The synthesis of these probes, including the newest and the most
potent probe Oxyphor 2P, is not simple, and standard commercialization pathways are presently not feasible.
Here we propose to establish a U24 Resource that would allow us to sustain synthesis of phosphorescent
probes, making them available to a broad range of biomedical researchers across different fields.
Simultaneously, we will generate software for measuring/imaging oxygen by phosphorescence lifetime and will
establish a center to provide consultations and training of new users interested in the method. The work will be
performed at two closely collaborating sites: the University of Pennsylvania (probe chemistry, software
development) and Martinos Center for Biomedical Imaging at the MGH (software development, user training).
Our laboratories have long history of productive collaboration as well as multiple collaborations and contacts
with researchers interested in oxygen. These collaborations along with the past experience of running a
neuroscience research resource will help us to establish an effective program, making the phosphorescence-
based oximetry accessible to a broad user base.
通过磷光猝灭进行氧成像的资源
项目摘要
实时,微创和空间分辨的组织氧合测量值
改变我们对许多临床问题的理解,包括肿瘤生物学的理解,
中风,眼科,组织再生的管理。多年来,我们的实验室有
开发了一种微创方法,用于在生物系统中的氧气成像,称为
磷光淬灭血氧饱和度。最近,该方法已通过两光子扩展
磷光寿命显微镜(2PLM),使3D组织中氧梯度的动态成像
通过微米级分辨率,为神经科学,干细胞生物学,癌症研究开辟了新的视野
免疫学,组织工程和其他几个领域。甚至最近,
用Cherenkov激发发光扫描成像(CELSI)的磷光功能使整洁
在接受放射疗法的组织中临床前环境中的3D中的氧气。同时,
基于磷光的血氧仪越来越多地吸引医学界的注意力
要直接评估创伤下组织的生理状况,请优化输血的功效
监测光动力和辐射疗法进度的标记。这些和其他申请有
为在不同的生物医学领域跨越磷光技术的广泛传播奠定了基础。
磷光猝灭方法的核心是特殊的氧探针,开发了,
在我们的实验室中不断优化。这些探针的综合,包括最新和最新的探针
有效的探针氧2p并不简单,并且标准的商业化途径目前不可行。
在这里,我们建议建立一个U24资源,以使我们能够维持磷光的合成
探针,使其可用于各个领域的各种生物医学研究人员。
同时,我们将生成用于通过磷光寿命测量/成像氧的软件,并且将
建立一个中心,以提供对该方法感兴趣的新用户的咨询和培训。工作将是
在两个紧密协作的网站上表演:宾夕法尼亚大学(探针化学,软件
开发)和MGH(软件开发,用户培训)的生物医学成像中心。
我们的实验室拥有悠久的生产协作历史以及多次合作和联系
与氧气感兴趣的研究人员。这些合作以及过去的经验
神经科学研究资源将帮助我们建立有效的计划,使磷光 -
基于大量用户群可以访问的血氧仪。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Impact of sodium glucose linked cotransporter-2 inhibition on renal microvascular oxygen tension in a rodent model of diabetes mellitus.
- DOI:10.14814/phy2.14890
- 发表时间:2021-06
- 期刊:
- 影响因子:2.5
- 作者:Hare GMT;Zhang Y;Chin K;Thai K;Jacobs E;Cazorla-Bak MP;Nghiem L;Wilson DF;Vinogradov SA;Connelly KA;Mazer CD;Evans RG;Gilbert RE
- 通讯作者:Gilbert RE
Measurement of cerebral oxygen pressure in living mice by two-photon phosphorescence lifetime microscopy.
- DOI:10.1016/j.xpro.2022.101370
- 发表时间:2022-06-17
- 期刊:
- 影响因子:0
- 作者:Erlebach, Eva;Ravotto, Luca;Wyss, Matthias T.;Condrau, Jacqueline;Troxler, Thomas;Vinogradov, Sergei A.;Weber, Bruno
- 通讯作者:Weber, Bruno
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SERGEI VINOGRADOV其他文献
SERGEI VINOGRADOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SERGEI VINOGRADOV', 18)}}的其他基金
Dendritic upconverting nanoparticles for multiphoton imaging and sensing
用于多光子成像和传感的树突上转换纳米颗粒
- 批准号:
8815403 - 财政年份:2014
- 资助金额:
$ 30.07万 - 项目类别:
Dendritic upconverting nanoparticles for multiphoton imaging and sensing
用于多光子成像和传感的树突上转换纳米颗粒
- 批准号:
8932692 - 财政年份:2014
- 资助金额:
$ 30.07万 - 项目类别:
DENDRITIC OXYGEN SENSOR WITH TWO-PHOTON ABSORBING ANTENNA
具有双光子吸收天线的树枝状氧传感器
- 批准号:
8362568 - 财政年份:2011
- 资助金额:
$ 30.07万 - 项目类别:
DENDRITIC OXYGEN SENSOR WITH TWO-PHOTON ABSORBING ANTENNA
具有双光子吸收天线的树枝状氧传感器
- 批准号:
8169540 - 财政年份:2010
- 资助金额:
$ 30.07万 - 项目类别:
DENDRITIC OXYGEN SENSOR WITH TWO-PHOTON ABSORBING ANTENNA
带双光子吸收天线的树枝状氧传感器
- 批准号:
7955437 - 财政年份:2009
- 资助金额:
$ 30.07万 - 项目类别:
DENDRITIC OXYGEN SENSOR WITH TWO-PHOTON ABSORBING ANTENNA
带双光子吸收天线的树枝状氧传感器
- 批准号:
7723846 - 财政年份:2008
- 资助金额:
$ 30.07万 - 项目类别:
Oxygen microscopy by two-photon excited phosphorescence
双光子激发磷光氧气显微镜
- 批准号:
7568976 - 财政年份:2007
- 资助金额:
$ 30.07万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 30.07万 - 项目类别:
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 30.07万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 30.07万 - 项目类别: