ADDITIVE MANUFACTURING OF PDMS MICROFLUIDICS
PDMS 微流控的增材制造
基本信息
- 批准号:10698810
- 负责人:
- 金额:$ 106.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-19 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Development of new therapeutics often fails in human clinical trials due to the biological differences between humans and
animal models and the inability of current in vitro models to accurately recapitulate the in vivo state. As such, in vitro microfluidic (MF)
models have seen significant growth and become a key tool for understanding biological systems, and for testing and development of
new therapeutics. Innovation in microfluidics, however, is limited by materials and manufacturing challenges associated with
conventional processes such as soft lithography, injection molding, and mechanical milling. Additive manufacturing (AM), also referred
to as 3D printing, has been heralded as the solution to these manufacturing challenges and AM additionally offers broad design
freedom not accessible via conventional manufacturing. However, AM faces a critical hurdle: the limited ability to 3D print conventional
(thermally-curable) polydimethylsiloxane (PDMS), the most widely established R&D microfluidic material. Despite the potential
manufacturing and design benefits, AM has not been broadly adopted for MF production due in large part to the potential material risks.
Of the commercially available AM processes and those being researched, none offer a clear path to commercial 3D printing of
conventional PDMS MF devices. Our hypothesis is: combining the knowledge-base and familiarity of conventional PDMS with our 3D
PDMS process will fundamentally change the way microfluidics are fabricated and unlock the design freedom of additive manufacturing
for the MF community, which will lead to significant advancements of in vitro MF models.
Building upon our successful Phase I effort — during which we demonstrated the ability of our patent-pending 3D PDMS process
to 3D print MF devices from conventional PDMS — this Phase II effort focuses on developing a pilot-scale commercial 3D PDMS system
and using the 3D PDMS process to fabricate cutting edge in vitro blood-brain-barrier models for testing by our collaborators at Virginia
Tech. They recently developed a MF BBB model containing a nanofiber basement membrane mimic which demonstrates a superior
ability to recapitulate the in vivo BBB architecture. In Phase II, the team will optimize the architecture of the nanomembranes and then
design and demonstrate a commercially producible 3D PDMS MF nanomembrane BBB model with integrated electrodes. We will also
collaborate with the Nadkarni group at Harvard MGH to characterize the PDMS curing kinetics in 3D PDMS printing using laser speckle
rheology.
Aim 1: Operational Pilot-Scale 3D PDMS System. The objective of this aim is to design and a build pilot-scale 3D PDMS
system. Milestone 1A: 3D PDMS Simulation & Model Accurately Predict Curing within +/-10%; Milestone 1A: 3D PDMS Simulation
Model Accurately Predicts Curing within +/-10%; Milestone 1B: 3D PDMS unit achieves 200 mm3/hr build rate for MF device.
Aim 2: 3D Printed Nanofiber Blood-Brain-Barrier Model. The objective of this aim is to 3D print a highly reproducible BBB
model which incorporates a nanofiber membrane and integrated TEER electrodes. Milestone 2A: Transport master curves for nanofiber
membranes developed; Milestone 2B: Optimized nanofiber BBB model demonstrated by a 20% increase in TEER values for a co-
culture sample as compared to a monoculture sample.
Project Summary/Abstract
由于人类和
动物模型和当前体外模型无法准确概括体内状态。因此,体外微流体(MF)
模型已经看到了显着的增长,并成为理解生物系统的关键工具,并用于测试和开发
新理论。但是
传统的过程,例如软岩性摄影,注射成型和机械铣削。增材制造(AM),也推荐
对于3D打印,已被预示为解决这些制造挑战的解决方案,AM还提供广泛的设计
自由无法通过常规制造访问。但是,AM面临着一个关键的障碍:3D打印常规的能力有限
(可热疗法)聚二甲基硅氧烷(PDMS),这是最广泛建立的R&D微流体材料。尽管有潜力
制造和设计优势,AM在很大程度上归因于潜在的材料风险很大程度上并未广泛用于MF生产。
在商业上可用的AM流程和正在研究的过程中,没有一个为商业3D打印的清晰途径
常规的PDMS MF设备。我们的假设是:将常规PDM的知识基础和熟悉与我们的3D结合在一起
PDMS流程将从根本上改变微流体制造的方式,并解锁添加剂制造的设计自由
对于MF社区,这将导致体外MF模型的重大进步。
在我们成功的I阶段努力的基础上 - 在此期间,我们证明了我们的专利申请3D PDMS流程的能力
从传统PDM到3D打印MF设备 - 这二阶段的工作重点是开发飞行员大型商业3D PDMS系统
并使用3D PDMS工艺在弗吉尼亚州的合作者进行测试来制造体外血脑屏障模型的尖端
技术。他们最近开发了一个MF BBB模型,该模型包含一个纳米纤维基底膜模拟物,该模拟显示出优质
概括体内BBB体系结构的能力。在第二阶段,团队将优化纳米膜的体系结构,然后
设计并展示了具有集成电极的商业生产的3D PDMS MF纳米膜BBB模型。我们也会
与Harvard MGH的Nadkarni集团合作,以使用激光Specle在3D PDMS印刷中的PDMS固化动力学表征
流变学。
AIM 1:操作试验尺度3D PDMS系统。此目的的目的是设计和建立飞行员尺度的3D PDM
系统。里程碑1A:3D PDMS模拟和模型准确预测+/- 10%内的固化;里程碑1A:3D PDMS模拟
模型准确预测+/- 10%内的固化; Milestone 1B:3D PDMS单位可实现MF设备的200 mm3/hr构建率。
AIM 2:3D打印的纳米纤维血脑屏障模型。此目的的目的是打印高度可再现的BBB
结合纳米纤维膜和集成的TEER电极的模型。里程碑2A:纳米纤维的运输主曲线
膜开发;里程碑2B:优化的纳米纤维BBB模型,通过共同值增加了20%
与单一文化样本相比,培养样品。
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Jeffery Schultz的其他基金
ADDITIVE MANUFACTURING OF PDMS MICROFLUIDICS
PDMS 微流控的增材制造
- 批准号:1032442410324424
- 财政年份:2021
- 资助金额:$ 106.66万$ 106.66万
- 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:1073696110736961
- 财政年份:2023
- 资助金额:$ 106.66万$ 106.66万
- 项目类别:
Development and validation of a high-fidelity gynecologic training platform for robotic-assisted surgery using 3D printing technology
使用 3D 打印技术开发和验证用于机器人辅助手术的高保真妇科培训平台
- 批准号:1082124210821242
- 财政年份:2023
- 资助金额:$ 106.66万$ 106.66万
- 项目类别:
ONIX: A Neural Acquisition System for Unencumbered, Closed-Loop Recordings in Small, Freely Moving Animals
ONIX:一种神经采集系统,用于对小型、自由移动的动物进行无阻碍、闭环记录
- 批准号:1048218210482182
- 财政年份:2022
- 资助金额:$ 106.66万$ 106.66万
- 项目类别:
A low cost and effective foot orthotics fabrication framework
低成本且有效的足部矫形器制造框架
- 批准号:1062432910624329
- 财政年份:2021
- 资助金额:$ 106.66万$ 106.66万
- 项目类别:
A low cost and effective foot orthotics fabrication framework
低成本且有效的足部矫形器制造框架
- 批准号:1025174610251746
- 财政年份:2021
- 资助金额:$ 106.66万$ 106.66万
- 项目类别: