ADDITIVE MANUFACTURING OF PDMS MICROFLUIDICS
PDMS 微流控的增材制造
基本信息
- 批准号:10324424
- 负责人:
- 金额:$ 17.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAdvanced DevelopmentBiologicalBlood - brain barrier anatomyCellsCharacteristicsClinicalClinical TrialsComplexCultured CellsDevice or Instrument DevelopmentDevicesDiseaseElectrical ResistanceElectrodesElementsEnvironmentFaceFoundationsFutureHourHumanIn VitroLaboratory ResearchLegal patentLiquid substanceMalignant neoplasm of brainMeasurementMeasuresMedicalMedicineMembraneMicrofluidic MicrochipsMicrofluidicsModalityModelingNeedlesOpticsPatientsPerformancePermeabilityPharmacologic SubstancePhasePhenotypePhysiologicalPolyestersPolymersProcessProteinsQuick Test for Liver FunctionResearch PersonnelResolutionShapesSmall Business Innovation Research GrantStructureTechnologyTestingTight JunctionsTimeTransport Processbaseblood-brain barrier disruptionbrain endothelial cellcommercializationdesigndrug testingeffective therapyelastomericelectric fieldfluorescein isothiocyanate dextranin vivomonolayerorgan on a chippressureshear stresssimulationsuccess
项目摘要
Properly simulating an in vivo biological environment in vitro generally leads to increased clinical trial
success and more rapid access to effective treatments. Microfluidics are a primary means of simulating
biological environments in clinical and pharmaceutical laboratory research; however, the current utility of
microfluidics is limited by materials and manufacturing challenges. Additive manufacturing (3D printing) has
been heralded as the solution to these challenges, but it also faces hurdles, such as a relatively large
minimum feature size and difficulty in removing excess build material from internal passages. Additive
manufacturing has the potential to build complex, 3D, bio-mimicking structures and solve key challenges in
microfluidics such as fabricating efficient mixing elements, incorporating of membranes or electrodes,
providing integrated valving, and simplifying the connection between the micro-and macro-scales.
However, the most promising and widely used material in microfluidics, PDMS, is currently not available for
additive manufacturing. Phase, Inc. has developed a proprietary additive manufacturing technology termed
electric field fabrication (EFF) based on liquid dielectrophoresis that shapes uncured PDMS into prescribed
cross-sections which can be cured and bonded in succession to build a 3D microfluidic device. As opposed
to other 3DP modalities, our patented approach offers unique control over the 3D printing process, opening
the door to print new materials such as elastomerics with unprecedented resolution and no post-
processing. This technology offers the potential to increase the design space of PDMS microfluidics to
more closely match the in vivo environment enabling future advances in technologies such as organ-on-a-
chip. Commercialization of an additive manufacturing platform for complex 3D PDMS microfluidic devices
will enable broad access to 3D bio-mimicking structures which result in more effective treatments. The
microfluidics market is now valued at $14 billion and is expected to grow to $31 billion by 2027. PDMS
based products make up approximately 30% of the microfluidics market—the largest share of the market.
The proposed Phase I effort will further enhance the fidelity of the EFF process for additively manufacturing
PDMS devices through refinement of the overall platform and specifically address two aims which are
foundational to the commercial viability of the process. The Phase I effort will 1) demonstrate the functional
performance of a representative device and 2) demonstrate the ability to successfully incorporate a
membrane into a microfluidic device.
The aims of this Phase 1 SBIR proposal are to:
Aim 1. Fabricate a representative 3D microfluidic device in PDMS. To demonstrate the broad ranging utility
of the EFF process, a representative microfluid device will be fabricated in PDMS with two inlets, a passive
mixing element, an observation/measurement channel and an outlet. Successful demonstration of
additively manufacturing these basic microfluidic building blocks in a PDMS device will be the launching
point for fabrication of specific devices for trial studies and further commercialization.
Aim 2. Fabricate a PDMS device with an integrated track-etched membrane for simulation of the blood
brain barrier. Incorporation of membranes, electrodes and other elements in PDMS is key to building
functionality into microfluidic devices and is a key feature of EFF. Our additively manufactured model will be
comprised of brain endothelial cells cultured on a porous membrane (polyester track etch membrane, pores
0.4 µm) sandwiched between two additively manufactured PDMS layers. Human cerebral endothelial cells
(hCMEC/D3) will be used, as these cells have been demonstrated to recapitulate key phenotypic
characteristics of the BBB such as permeability, expression of junctional proteins and transendothelial
electrical resistance. Physiological shear stress will be applied on the cells by flow (~4 Dyn/cm2) to
encourage tight junction formation. Demonstration of the blood brain barrier device in Phase I will be
followed in Phase II with development of an advanced device.
Project summary/abstract
在体外正确模拟体内生物环境通常会导致临床试验的增加
成功和更快速地获得有效的治疗是模拟的主要手段。
然而,临床和药物实验室研究中的生物环境;
微流体技术受到材料和制造挑战的限制。
被誉为解决这些挑战的解决方案,但它也面临障碍,例如相对较大的
最小特征尺寸和从内部通道去除多余构建材料的难度。
制造有潜力构建复杂的 3D 仿生结构并解决以下领域的关键挑战
微流体,例如制造高效的混合元件,结合膜或电极,
提供集成阀门,并简化微观和宏观尺度之间的连接。
然而,微流控领域最有前途、应用最广泛的材料PDMS目前还无法用于
Phase, Inc. 开发了一种名为“增材制造”的专有技术。
基于液体介电泳的电场制造 (EFF),将未固化的 PDMS 成型为规定的形状
横截面可以连续固化和粘合以构建 3D 微流体装置。
与其他 3DP 模式相比,我们的专利方法提供了对 3D 打印过程的独特控制,
以前所未有的分辨率打印弹性材料等新材料的大门,无需后期处理
该技术有可能增加 PDMS 微流体的设计空间。
更紧密地匹配体内环境,从而实现器官移植等技术的未来进步
用于复杂 3D PDMS 微流体设备的增材制造平台的商业化。
将使广泛获得 3D 仿生结构成为可能,从而实现更有效的治疗。
微流体市场目前价值 140 亿美元,预计到 2027 年将增长到 310 亿美元。 PDMS
基产品约占微流体市场的 30%——市场份额最大。
拟议的第一阶段工作将进一步提高增材制造 EFF 工艺的保真度
PDMS 设备通过改进整体平台并具体解决两个目标:
该过程的商业可行性的基础 第一阶段的工作将 1) 展示功能性。
代表性设备的性能和 2) 展示成功整合
膜进入微流体装置。
第一阶段 SBIR 提案的目标是:
目标 1. 在 PDMS 中制造代表性的 3D 微流体装置以展示广泛的实用性。
在 EFF 过程中,将在 PDMS 中制造具有两个入口的代表性微流体装置,一个被动入口
混合元件、观察/测量通道和出口的成功演示。
在 PDMS 设备中增材制造这些基本微流体构件将是
制造用于试验研究和进一步商业化的特定设备的点。
目标 2. 制造具有集成径迹蚀刻膜的 PDMS 装置,用于模拟血液
将膜、电极和其他元件融入 PDMS 中是构建脑屏障的关键。
微流体设备的功能是我们的增材制造模型的一个关键特征。
由培养在多孔膜(聚酯径迹蚀刻膜、孔
0.4 µm)夹在两个增材制造的 PDMS 层之间。
将使用 (hCMEC/D3),因为这些细胞已被证明能够重现关键表型
BBB 的特征,例如通透性、连接蛋白和跨内皮细胞的表达
生理剪切应力将通过流动(~4 Dyn/cm2)施加到细胞上
促进紧密连接的形成。
随后在第二阶段开发了一种先进的设备。
项目概要/摘要
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffery Schultz其他文献
Jeffery Schultz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffery Schultz', 18)}}的其他基金
相似国自然基金
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
3D打印-前端聚合反应耦合新方法构筑凝胶支架材料及其应用基础研究
- 批准号:22378202
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分层悬浮3D打印工程化类弹性蛋白用于组织工程肺脏的构建研究
- 批准号:32301209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印多孔钛合金诱导瘢痕组织膜内巨噬细胞分泌TNFα+/TGFβ1+/BMP2+组织液促进大段骨缺损修复
- 批准号:82302684
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Modality-independent representations of object shape in macaque inferotemporal cortex
猕猴下颞叶皮层物体形状的模态无关表示
- 批准号:
10679530 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别:
A novel breast cancer therapy based on secreted protein ligands from CD36+ fibroblasts
基于 CD36 成纤维细胞分泌蛋白配体的新型乳腺癌疗法
- 批准号:
10635290 - 财政年份:2023
- 资助金额:
$ 17.36万 - 项目类别: