Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
基本信息
- 批准号:10564801
- 负责人:
- 金额:$ 66.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAccelerationAdherent CultureAdoptedAdoptionAffectAutomobile DrivingBar CodesBiocompatible MaterialsBiologyBone TissueCancer ModelCell LineCell ProliferationCell modelCellsCellular MorphologyChildCombination Drug TherapyCombined Modality TherapyCommunitiesCuesDNADataDevelopmentDiseaseDrug resistanceEngineeringEvaluationExhibitsExperimental ModelsExtracellular MatrixGelatinGene AmplificationGenomicsGoalsHeterogeneityHydroxyapatitesKnowledgeLeadLegal patentMalignant Bone NeoplasmMediatingMindMineralsModelingMusNanoporousOncogenesOsteogenesisOutcomePathologyPatientsPharmaceutical PreparationsPhenotypePhysiologicalPositioning AttributeReceptor Protein-Tyrosine KinasesRegulatory PathwayReportingResearchResistanceResourcesRoleScientistSignal TransductionSurvival RateTestingTherapeuticTissue EngineeringTreatment outcomeWorkXenograft Modelangiogenesisanticancer researchbonecancer cellchemotherapycostdesigndisease heterogeneitydrug candidatedrug discoverydrug response predictioneffective therapyestablished cell linehigh dimensionalityhigh throughput screeninghigh-throughput drug screeningimprovedin vitro Modelin vivoinventionmineralizationmouse modelnew therapeutic targetnovelnovel therapeuticsosteosarcomapatient derived xenograft modelporous hydrogelpre-clinicalprimary bone cancerresistance mechanismresponsescaffoldscreeningsingle-cell RNA sequencingsoft tissuestemnesstargeted treatmentthree dimensional cell culturethree-dimensional modelingtooltranscriptome sequencingtumoryoung adult
项目摘要
Osteosarcoma (OS) is an aggressive primary bone cancer that mainly affects children and young adults, and is
characterized by high genomic complexity. Current treatment relies on chemotherapy, yet many patients exhibit
resistance or develop metastatic disease. Current experimental models for OS research rely primarily on 2D
monolayer culture or xenograft models. However, 2D cultures culture generally fail to retain tumor phenotypes
and drug response in vivo, whereas mouse models are costly and impractical for high-throughput drug screening.
Recently tissue engineered 3D cancer models have emerged as new cancer research tools, which better
recapitulate in vivo tumor signaling and drug responses than 2D cultures. However, most tissue engineered
cancer models to date are limited to soft tissues. Unlike soft tissues, bone is characterized by a highly-
mineralized extracellular matrix (ECM) comprised of 70% minerals such as hydroxyapatite (HA) crystals.
However, the role of bone mineral in driving OS progression and drug response remains largely unknown.
Furthermore, previous OS studies rely on a narrow set of cell lines that have been in culture for decades, which
may no longer reflect the biology and drug response in vivo The overall goal of this proposal is to integrate a
scalable and physiologically relevant 3D OS model with high-dimensional sequencing tools to elucidate OS
genomic heterogeneity and drug resistance, as well as screening novel combination therapies using multiple
patient-derived OS cell lines. Our 3D models is specifically designed with high-throughput screening in mind,
and leverages on a patented microribbon (µRB)-based scaffold invented by the Yang (PI) lab. This multi-PI
application will bring together expertise in biomaterials design and 3D tumor models (Yang lab/Stanford) with
expertise in patient-derived xenograft (PDX) cell lines, genomics and preclinical therapeutics of OS (Sweet-
Cordero lab/UCSF). We hypothesize that OS signaling and drug responses in 3D culture can be modulated by
tuning the type and size of mineral cues 3D gelatin µRB scaffolds to better mimic the in vivo phenotype, and
combinational therapies that target identified signaling using 3D OS model will lead to better treatment outcomes
for OS in vivo. To test these hypotheses, we will carry out the following aims. Aim 1: Develop 3D OS models with
optimized niche cues for deep characterization of OS signaling and heterogeneity using multiple OS PDX cell
lines and compare results to mouse orthotopic OS models. AIM 2: To harness 3D OS models to determine the
regulatory pathways involved in mediating receptor tyrosine kinase expression in OS and identify lead drug
candidates by screening a panel of targeted drug therapies. Aim 3: To identify novel combination therapies for
PDX OS cell lines and elucidate potential drug resistance mechanisms using 3D OS models. This study will
pioneer integrating 3D OS model with PDX cell lines and high-dimensional sequencing expertise. The outcomes
would significantly advance the understanding of OS biology and heterogeneity, identifying drug resistance
mechanisms, and accelerate discovery of combination therapies that cannot be achieved using existing tools.
骨肉瘤 (OS) 是一种侵袭性原发性骨癌,主要影响儿童和年轻人,
其特点是基因组高度复杂,目前的治疗依赖于化疗,但许多患者表现出这种情况。
当前 OS 研究的实验模型主要依赖于 2D。
单层培养或异种移植模型然而,二维培养通常无法保留肿瘤表型。
和体内药物反应,而小鼠模型对于高通量药物筛选来说成本高昂且不切实际。
最近,组织工程 3D 癌症模型已成为新的癌症研究工具,它可以更好地
然而,大多数组织工程技术比二维培养物更能概括体内肿瘤信号传导和药物反应。
迄今为止的癌症模型仅限于软组织,与软组织不同,骨骼的特点是高度敏感。
矿化细胞外基质 (ECM) 由 70% 的矿物质组成,例如羟基磷灰石 (HA) 晶体。
然而,骨矿物质在驱动 OS 进展和药物反应中的作用仍然很大程度上未知。
此外,之前的 OS 研究依赖于一组已培养了数十年的狭窄细胞系,这些细胞系
可能不再反映体内的生物学和药物反应 该提案的总体目标是整合
可扩展且生理相关的 3D OS 模型,具有高维测序工具来阐明 OS
基因组异质性和耐药性,以及使用多种药物筛选新的联合疗法
我们的 3D 模型专为高通量筛选而设计,
并利用由 Yang (PI) 实验室发明的基于微带 (μRB) 的专利支架。
该应用程序将汇集生物材料设计和 3D 肿瘤模型(Yang 实验室/斯坦福大学)方面的专业知识
患者来源的异种移植(PDX)细胞系、基因组学和 OS 临床前治疗方面的专业知识(Sweet-
Cordero 实验室/UCSF)我们勇敢地认为 3D 培养中的 OS 信号传导和药物反应可以通过以下方式进行调节:
调整矿物质线索 3D 明胶 µRB 支架的类型和大小,以更好地模拟体内表型,以及
使用 3D OS 模型针对已识别信号的联合疗法将带来更好的治疗结果
为了测试这些假设,我们将实现以下目标:开发 3D OS 模型。
使用多个 OS PDX 细胞优化利基线索,深入表征 OS 信号传导和异质性
目标 2:利用 3D OS 模型来确定
参与介导 OS 中受体酪氨酸激酶表达的调节途径并确定先导药物
通过筛选一组靶向药物疗法来寻找候选者。 目标 3:确定新的联合疗法。
本研究将使用 3D OS 模型来研究 PDX OS 细胞系并阐明潜在的耐药机制。
将 3D OS 模型与 PDX 细胞系和高维测序专业知识相结合的先驱。
将显着促进对操作系统生物学和异质性的理解,识别耐药性
机制,并加速发现使用现有工具无法实现的联合疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Alejandro Sweet-Cordero其他文献
Eric Alejandro Sweet-Cordero的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Alejandro Sweet-Cordero', 18)}}的其他基金
Role of long non-coding RNAs in sarcoma pathogenesis
长链非编码RNA在肉瘤发病机制中的作用
- 批准号:
9883636 - 财政年份:2017
- 资助金额:
$ 66.62万 - 项目类别:
Mechanisms of chemotherapy response and tumor re-initiation in lung cancer
肺癌化疗反应和肿瘤再启动的机制
- 批准号:
8843190 - 财政年份:2014
- 资助金额:
$ 66.62万 - 项目类别:
Mechanisms of chemotherapy response and tumor re-initiation in lung cancer
肺癌化疗反应和肿瘤再启动的机制
- 批准号:
8445299 - 财政年份:2011
- 资助金额:
$ 66.62万 - 项目类别:
Mechanisms of chemotherapy response and tumor re-initiation in lung cancer
肺癌化疗反应和肿瘤再启动的机制
- 批准号:
8082513 - 财政年份:2011
- 资助金额:
$ 66.62万 - 项目类别:
Mechanisms of chemotherapy response and tumor re-initiation in lung cancer
肺癌化疗反应和肿瘤再启动的机制
- 批准号:
8838054 - 财政年份:2011
- 资助金额:
$ 66.62万 - 项目类别:
Mechanisms of chemotherapy response and tumor re-initiation in lung cancer
肺癌化疗反应和肿瘤再启动的机制
- 批准号:
9032663 - 财政年份:2011
- 资助金额:
$ 66.62万 - 项目类别:
Mechanisms of chemotherapy response and tumor re-initiation in lung cancer
肺癌化疗反应和肿瘤再启动的机制
- 批准号:
8266328 - 财政年份:2011
- 资助金额:
$ 66.62万 - 项目类别:
Identification of Novel Kras Effector Pathways in Lung Cancer
肺癌中新型 Kras 效应通路的鉴定
- 批准号:
7653356 - 财政年份:2009
- 资助金额:
$ 66.62万 - 项目类别:
Novel effectors of Kras in oncogenesis, senescence and tumor progression
Kras 在肿瘤发生、衰老和肿瘤进展中的新效应子
- 批准号:
8512665 - 财政年份:2009
- 资助金额:
$ 66.62万 - 项目类别:
Novel effectors of Kras in oncogenesis, senescence and tumor progression
Kras 在肿瘤发生、衰老和肿瘤进展中的新效应子
- 批准号:
8840544 - 财政年份:2009
- 资助金额:
$ 66.62万 - 项目类别:
相似国自然基金
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
人类胎盘合体滋养层形成分子机制及其与子痫前期发生关联的研究
- 批准号:31900602
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining molecular mechanisms by which stimulant evoked dopamine drives inflammation and neuronal dysfunction in neuroHIV
定义兴奋剂诱发多巴胺驱动神经艾滋病毒炎症和神经元功能障碍的分子机制
- 批准号:
10685160 - 财政年份:2023
- 资助金额:
$ 66.62万 - 项目类别:
Using cellular co-biosis and age programmable mice to derive a global interaction map of aging hallmarks
使用细胞共生和年龄可编程小鼠来得出衰老标志的全局相互作用图
- 批准号:
10721454 - 财政年份:2023
- 资助金额:
$ 66.62万 - 项目类别:
Gastroesophageal junction stem cells as the origin of Barretts esophagus and cancer
胃食管连接处干细胞是巴雷特食管和癌症的起源
- 批准号:
10506097 - 财政年份:2022
- 资助金额:
$ 66.62万 - 项目类别:
Engineering Human Heart Tissues with Polyploid Cardiomyocytes
用多倍体心肌细胞改造人类心脏组织
- 批准号:
10616611 - 财政年份:2022
- 资助金额:
$ 66.62万 - 项目类别: