Digital Detection of Dementia Studies (D cubed Studies).

痴呆症研究的数字检测(D 立方研究)。

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Every year Alzheimer’s disease and related dementias (ADRD) adversely affect millions of Americans at a societal cost of more than $200 million.1 Concurrently, half of Americans living with ADRD never receive a diagnosis.2-7 Early detection helps those with ADRD and their caregivers better plan and potentially lessen the burden of lengthy and costly medical care. Current investigational approaches using biomarkers for early detection are invasive, costly, and sometimes inaccessible to patients. The National Institute on Aging calls for the development of effective, scalable and low cost approaches for early detection of ADRD (RFA-AG-20-051). Currently, primary care clinicians provide the majority of care to older adults living with ADRD.1-5 Our interdisciplinary scientific teams have developed and tested scalable early detection approaches.10, 11 We are proposing to evaluate an integrated approach embedded in the Annual Wellness Visit (AWV) that leverages Electronic Health Record systems, machine learning models, and patient reported outcomes to deploy a low- cost and scalable approach for early detection of ADRD. Our proposed studies will leverage previously developed machine learning models (Passive Digital Marker) and patient reported outcomes (Quick Dementia Rating Scale). The design of our proposed studies is predicated on the notion that patient screening is done to identify a more targeted group of referral for applicable diagnostic and management services. We will conduct two complementary multi-site studies to evaluate the effectiveness of two scalable approaches for early detection of ADRD. The first study will be a clinical validation study of the three scalable approaches; the Passive Digital Marker (PDM) that uses EHR data, the Quick Dementia Rating Scale (QDRS) that uses patient reported outcomes (PROs) imbedded within the EHR system, and the combination of both (PDM + QDRS). The second study will be a pragmatic cluster-randomized controlled comparative effectiveness trial of two screening approaches embedded within the AWV, as compared to the AWV-only process, in increasing the incidence rate of new ADRD. In the final year of the study, we will share our codes for both the Passive Digital Marker and the QDRS with Epic headquarters to ensure that these codes are available for any healthcare system with Epic nationwide. The high costs of treating Alzheimer’s disease and the costs incurred by patients and caregivers, both tangible and intangible, are a major threat to public health and the US economy. Developing scalable and low cost instruments and assessments integrated into EHR data will assist physicians in early detection, more and better diagnoses, and clinically meaningful care recommendations. Cost effective, scalable, and noninvasive models are urgently needed to proactively mitigate these costs and prolonged medical care.
项目概要/摘要 每年,阿尔茨海默病和相关痴呆症 (ADRD) 都会给数百万美国人带来不利影响。 社会成本超过 2 亿美元。1 同时,患有 ADRD 的美国人中有一半从未获得过治疗 诊断。2-7 早期检测有助于 ADRD 患者及其护理人员更好地制定计划,并有可能减少 目前使用生物标志物进行早期治疗的研究方法造成了漫长且昂贵的负担。 国家老龄化研究所呼吁,这种检测是侵入性的、成本高昂,而且有时患者无法获得。 开发有效、可扩展且低成本的方法来早期检测 ADRD (RFA-AG-20-051)。 目前,初级保健监护人为患有 ADRD 的老年人提供大部分护理。1-5 跨学科科学团队开发并测试了可扩展的早期检测方法。10, 11 我们正在 提议评估嵌入年度健康访问 (AWV) 的综合方法,该方法利用 电子健康记录系统、机器学习模型和患者报告的结果,以部署低 我们提出的研究将利用以前的方法来早期检测 ADRD。 开发了机器学习模型(被动数字标记)和患者报告的结果(快速痴呆症) 我们提出的研究的设计基于这样的概念:进行患者筛查是为了 我们将确定更有针对性的转诊群体以获取适用的诊断和管理服务。 两项互补的多地点研究,以评估两种可扩展方法的有效性 第一项研究将是三种可扩展方法的临床验证研究; 使用 EHR 数据的被动数字标记 (PDM)、使用患者的快速痴呆评定量表 (QDRS) 嵌入 EHR 系统中的报告结果 (PRO) 以及两者的组合 (PDM + QDRS)。 第二项研究将是一项实用的整群随机对照有效性试验 与仅使用 AWV 的流程相比,嵌入 AWV 的筛选方法可以提高 在研究的最后一年,我们将分享被动数字的代码。 Marker 和 Epic 总部的 QDRS 确保这些代码可用于任何医疗保健 全国范围内与Epic系统。 治疗阿尔茨海默病的高昂费用以及患者和护理人员产生的有形费用 和无形的,是对公共卫生和美国经济的主要威胁。 集成到 EHR 数据中的仪器和评估将帮助医生进行早期检测、更多和 更好的诊断和具有临床意义的护理建议,具有成本效益、可扩展且无创。 迫切需要模型来主动降低这些成本并延长医疗护理时间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MALAZ BOUSTANI其他文献

MALAZ BOUSTANI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MALAZ BOUSTANI', 18)}}的其他基金

I-CARE 2 RCT: Mobile Telehealth to Reduce Alzheimer's-related Symptoms for Caregivers and Patients
I-CARE 2 RCT:移动远程医疗可减少护理人员和患者的阿尔茨海默病相关症状
  • 批准号:
    10685354
  • 财政年份:
    2022
  • 资助金额:
    $ 104.9万
  • 项目类别:
The Agile Nudge University Program
敏捷助推大学计划
  • 批准号:
    10677700
  • 财政年份:
    2022
  • 资助金额:
    $ 104.9万
  • 项目类别:
Emergency General Surgery Delirium Recovery Model: A Collaborative Care Intervention
急诊普通外科谵妄恢复模型:协作护理干预
  • 批准号:
    10416631
  • 财政年份:
    2022
  • 资助金额:
    $ 104.9万
  • 项目类别:
Emergency General Surgery Delirium Recovery Model: A Collaborative Care Intervention
急诊普通外科谵妄恢复模型:协作护理干预
  • 批准号:
    10649684
  • 财政年份:
    2022
  • 资助金额:
    $ 104.9万
  • 项目类别:
I-CARE 2 RCT: Mobile Telehealth to Reduce Alzheimer's-related Symptoms for Caregivers and Patients
I-CARE 2 RCT:移动远程医疗可减少护理人员和患者的阿尔茨海默病相关症状
  • 批准号:
    10505463
  • 财政年份:
    2022
  • 资助金额:
    $ 104.9万
  • 项目类别:
I-CARE 2 RCT: Mobile Telehealth to Reduce Alzheimer's-related Symptoms for Caregivers and Patients
I-CARE 2 RCT:移动远程医疗可减少护理人员和患者的阿尔茨海默病相关症状
  • 批准号:
    10893170
  • 财政年份:
    2022
  • 资助金额:
    $ 104.9万
  • 项目类别:
I-CARE 2 RCT: Mobile Telehealth to Reduce Alzheimer's-related Symptoms for Caregivers and Patients
I-CARE 2 RCT:移动远程医疗可减少护理人员和患者的阿尔茨海默病相关症状
  • 批准号:
    10812844
  • 财政年份:
    2022
  • 资助金额:
    $ 104.9万
  • 项目类别:
I-CARE 2 RCT: Mobile Telehealth to Reduce Alzheimer's-related Symptoms for Caregivers and Patients
I-CARE 2 RCT:移动远程医疗可减少护理人员和患者的阿尔茨海默病相关症状
  • 批准号:
    10685354
  • 财政年份:
    2022
  • 资助金额:
    $ 104.9万
  • 项目类别:
Digital Detection of Dementia Studies (D cubed Studies).
痴呆症研究的数字检测(D 立方研究)。
  • 批准号:
    10092237
  • 财政年份:
    2020
  • 资助金额:
    $ 104.9万
  • 项目类别:
Digital Detection of Dementia Studies (D cubed Studies).
痴呆症研究的数字检测(D 立方研究)。
  • 批准号:
    10662223
  • 财政年份:
    2020
  • 资助金额:
    $ 104.9万
  • 项目类别:

相似国自然基金

基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
  • 批准号:
    81903703
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
  • 批准号:
    81901296
  • 批准年份:
    2019
  • 资助金额:
    20.5 万元
  • 项目类别:
    青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
  • 批准号:
    31900984
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 104.9万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 104.9万
  • 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
  • 批准号:
    10748606
  • 财政年份:
    2024
  • 资助金额:
    $ 104.9万
  • 项目类别:
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 104.9万
  • 项目类别:
Core B: Biospecimen Core
核心 B:生物样本核心
  • 批准号:
    10555894
  • 财政年份:
    2023
  • 资助金额:
    $ 104.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了