Addressing Lumbar Puncture Challenges Using Patch Ultrasound and Augmented Reality
使用贴片超声和增强现实解决腰椎穿刺挑战
基本信息
- 批准号:10258250
- 负责人:
- 金额:$ 31.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAdipose tissueAdoptionAnatomyAnimal ExperimentsAnimalsAttentionAugmented RealityAutomobile DrivingCerebrospinal FluidClinicalCollaborationsDangerousnessData CollectionDevelopmentDiagnosisDiagnosticEconomicsEnvironmentFaceFailureFeedbackFreedomFutureGoalsHandImageIndustryInpatientsInstitutionIonizing radiationLeadLengthLiquid substanceMeasurementMedicalModelingMotionNavigation SystemNeedlesNeurologistObesityParticipantPathway interactionsPatientsPerformancePhasePhysiciansPositioning AttributeProceduresPuncture procedureResolutionRotationSamplingSmall Business Innovation Research GrantSpinal PunctureStructureSystemTabletsTechnologyTherapeuticTimeTissuesTransducersTranslationsUltrasonographyUniversitiesUpdateValidationVertebral columnVisualizationbaseblindclinical applicationcommercializationcontrast imagingcost effectivedesignemergency service responderexperimental studyhead mounted displayin vivoinstrumentnervous system disorderprototypereal-time imagesspine bone structurestandard carestandard of caretoolusability
项目摘要
PROJECT SUMMARY
Every year, neurologists and emergency personnel perform over 400,000 diagnostic and therapeutic lumbar
punctures (LP) to collect cerebrospinal fluid (CSF), a vital fluid in the diagnosis and treatment of a myriad of
neurological diseases and disorders. Under standard care, LPs are performed in an inpatient environment at the
bedside. The procedure involves navigating a needle that can be up to 14 cm in length into a 3-6 mm target
window in the lumbar spine region. Physicians face the challenge of precise, accurate navigation and placement
of the needle to the target. Failure to collect a viable sample and procedure-related complications can lead to
misdiagnoses, treatment delays, and unnecessary and even dangerous procedures. Currently, the average
physician takes 3 attempts to correctly place the needle. The associated failure rate of the procedure is ~23.3%.
The failure rate rises to 50% in obese and scoliotic patients, for which the physician must navigate through
excess adipose tissue and difficult anatomy. Failure to collect CSF leads the use of fluoroscopic guidance, which
takes longer and subjects the patient and physician to ionizing radiation. Except for fluoroscopic guidance, the
current standard of care does not involve any visualization of tissue using technology such as topical ultrasound.
In this phase I application, we propose a navigation system featuring a patient-anchored ultrasound patch which
transforms LPs from a blind procedure with high failure rate to a fast and simple one. Our solution addresses the
typical shortcomings of regular ultrasound guidance which has limited its wide adoption for LPs. The patch
ultrasound relieves the clinician from handling the ultrasound and needle simultaneously, yields high-contrast
images of the vertebrae pathway, and provides a reliable 3D volume. The navigation system with augmented
reality helps the clinician to successfully reach the target on the first try. Most importantly, the combination of
these technologies offers what we call active needle visualization, where the imaging plane of the ultrasound is
controlled to provide an optimal view of the needle in a closed-loop system. Our hypothesis in this proposal is
that the simplicity of the patch design and the availability of off-the-shelf navigation components combined with
Clear Guide’s matured navigation platform promises a cost-effective solution suitable for the clinical application
at hand. We will achieve our goal through the following aims: (1) Develop and Integrate Patient-anchored
Ultrasound Imaging Patch with Clear Guide Medical Tracking System, (2) Interface Design and Incorporation
into a Tablet and head-mounted display (HMD), and (3) Accuracy Measurement and User Data Collection. The
ultimate goal of this academic (Johns Hopkins University) and industry (Clear Guide Medical) collaboration is
the safe, economic, and effective development of patient-anchored ultrasound patch to actively guide LP
procedures.
项目概要
每年,神经科医生和急救人员都会进行超过 400,000 次腰椎诊断和治疗
穿刺(LP)收集脑脊液(CSF),脑脊液是诊断和治疗多种疾病的重要液体
神经系统疾病和紊乱在标准护理下,LP 在医院的住院环境中进行。
该手术涉及将长达 14 厘米的针刺入 3-6 毫米的目标。
医生面临着腰椎区域的精确导航和定位的挑战。
未能收集可行的样本和与手术相关的并发症可能会导致。
目前,平均而言,误诊、治疗延误以及不必要甚至危险的手术。
医生尝试 3 次才能正确放置针头,手术的相关失败率约为 23.3%。
肥胖和脊柱侧弯患者的失败率高达 50%,医生必须解决这一问题
过多的脂肪组织和困难的解剖结构导致无法收集脑脊液导致使用荧光镜引导。
需要更长的时间并使患者和医生受到电离辐射 除了荧光镜引导外,
目前的护理标准不涉及使用局部超声等技术对组织进行任何可视化。
在此一期应用中,我们提出了一种导航系统,其特点是患者锚定超声贴片
将 LP 从高失败率的盲目程序转变为快速而简单的程序,我们的解决方案解决了这一问题。
常规超声引导的典型缺点限制了其在腰椎间盘突出症中的广泛采用。
超声波使临床医生无需同时操作超声波针,产生高对比度
椎骨通路的图像,并提供可靠的 3D 体积增强导航系统。
现实可以帮助临床医生在第一次尝试时成功达到目标。最重要的是,两者的结合。
这些技术提供了我们所说的主动针可视化,其中超声波的成像平面是
控制以提供闭环系统中针的最佳视图。我们在该提案中的假设是
贴片设计的简单性和现成导航组件的可用性与
Clear Guide成熟的导航平台为临床应用提供了经济高效的解决方案
我们将通过以下目标实现我们的目标: (1) 开发和整合以患者为中心的服务。
具有清晰引导医疗跟踪系统的超声成像贴片,(2) 界面设计和整合
集成到平板电脑和头戴式显示器 (HMD) 中,以及 (3) 精度测量和用户数据收集。
这种学术(约翰霍普金斯大学)和工业(Clear Guide Medical)合作的最终目标是
安全、经济、有效地开发患者锚定超声贴片以主动引导腰椎穿刺
程序。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AutoInFocus, a new paradigm for ultrasound-guided spine intervention: a multi-platform validation study.
AutoInFocus,超声引导脊柱干预的新范例:多平台验证研究。
- DOI:
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Xu, Keshuai;Jiang, Baichuan;Moghekar, Abhay;Kazanzides, Peter;Boctor, Emad
- 通讯作者:Boctor, Emad
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Purnima Rajan其他文献
Purnima Rajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Purnima Rajan', 18)}}的其他基金
A Novel Device for Training and Evaluating Ultrasound-Guided Procedures In Anesthesia
一种用于培训和评估麻醉中超声引导手术的新型设备
- 批准号:
10323988 - 财政年份:2021
- 资助金额:
$ 31.19万 - 项目类别:
Augmented Reality Real-Time Guidance for MRI Interventions
增强现实实时指导 MRI 干预
- 批准号:
10080437 - 财政年份:2020
- 资助金额:
$ 31.19万 - 项目类别:
Augmented Reality Real-Time Guidance for MRI-Guided Interventions
增强现实实时指导 MRI 引导干预
- 批准号:
10603043 - 财政年份:2020
- 资助金额:
$ 31.19万 - 项目类别:
Augmented Reality Real-Time Guidance for MRI-Guided Interventions
增强现实实时指导 MRI 引导干预
- 批准号:
10709008 - 财政年份:2020
- 资助金额:
$ 31.19万 - 项目类别:
An Augmented Reality Device to Prevent Wrong-Level Spine Surgery
防止脊柱手术水平错误的增强现实设备
- 批准号:
9907919 - 财政年份:2019
- 资助金额:
$ 31.19万 - 项目类别:
相似国自然基金
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D纳米打印复合金属硫化物阵列反应器光催化CO2还原制C2研究
- 批准号:22378174
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 31.19万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 31.19万 - 项目类别:
A novel breast cancer therapy based on secreted protein ligands from CD36+ fibroblasts
基于 CD36 成纤维细胞分泌蛋白配体的新型乳腺癌疗法
- 批准号:
10635290 - 财政年份:2023
- 资助金额:
$ 31.19万 - 项目类别:
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 31.19万 - 项目类别:
Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
- 批准号:
10729161 - 财政年份:2023
- 资助金额:
$ 31.19万 - 项目类别: