(PQC2) Optical Hallmarks of Aggressive Clones Within Oral Field Cancerization
(PQC2) 口腔癌化中侵袭性克隆的光学标志
基本信息
- 批准号:8912436
- 负责人:
- 金额:$ 64.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimal ModelAreaBiological MarkersBiopsyCancer DetectionCancerousCarcinomaCellsChemopreventive AgentCicatrixClassificationClinicalClinical ResearchClone CellsComplexDataDevelopmentDiagnosisDiagnosticDimensionsDysplasiaEarly DiagnosisFluorescenceGoalsHistologyImageImaging DeviceIndividualInflammationLesionLightLightingLinkLongitudinal StudiesLoss of HeterozygosityMalignant - descriptorMalignant NeoplasmsMeasuresMethodsMicroscopyModalityMolecularMolecular AnalysisMolecular CarcinogenesisMonitorMouth NeoplasmsMutationNeoplasm MetastasisNeoplasmsNewly DiagnosedNuclearOpticsOralOral cavityOral mucous membrane structureOrganOutcomePathologicPatientsPerformancePremalignantProcessPropertyRecurrent diseaseRegimenResearchResolutionRiskRisk AssessmentScreening for Oral CancerSensitivity and SpecificitySevere dysplasiaSiteSpecificityStagingStem cellsSurfaceSurvival RateTechniquesTechnologyTimeTissuesTranslationsUnnecessary SurgeryVisualalcohol exposurebasecancer stem cellcarcinogenesishigh riskimaging systemimprovedin vivoinsightmalignant mouth neoplasmmolecular imagingmolecular markermorphometryneoplasticnoveloptical imagingoral carcinogenesisoral lesionoral premalignancyoutcome forecastphysical propertypoint of carepredictive markerpredictive modelingpublic health relevanceresponsescreeningspatial relationshiptissue preparationtobacco exposuretooltumortumor progression
项目摘要
DESCRIPTION (provided by applicant): Oral cancer is the 6th most common cancer worldwide. Despite the easy accessibility of the oral cavity for screening, oral cancer has one of the lowest 5-year survival rates of all cancers. Oral cancer is thought to arise as a result of fied cancerization, where, often in response to tobacco and alcohol exposure, wide areas of the mucosal surface develop subclinical carcinogenetic changes. The poor outcomes of oral cancer arise primarily because: (1) most patients are diagnosed at a late stage since the molecular changes that put patients at risk of neoplasia often do not give rise to clinically visible lesions and (2) a large fraction of patients treated for oral cancer develop subsequent cancers because areas of field cancerization persist following treatment and are not clinically visible. The development and progression of oral cancer is ultimately a molecular process, reflecting a complex succession of genetic changes within the field-at-risk. Ultimately tumor-initiating stem cells give rise to aggressive clones within a mucosal field-at-risk, resulting in malignant progression. While much progress has been made to understand the molecular alterations associated with oral cancer progression, this research has not yet led to improvements in early detection mainly because molecular analysis methods are costly and can only be carried out with tissues obtained from invasive biopsies. There is increasing evidence to suggest that key molecular alterations result in phenotypic changes that can be measured clinically at the point-of-care. Recent studies by our group and others suggest that multi-modal optical imaging can image changes in tissue fluorescence and nuclear morphometry to identify high grade oral precancer and early cancer with significantly improved sensitivity and specificity compared to visual examination; moreover, changes in optical properties correlate strongly with molecular markers associated with neoplastic progression. The goal of this proposal is to validate the ability of multimodal optical imaging to improve early detection and to determine whether risk-related optical markers (RROMs) can be used to predict the likelihood of malignant progression. We will perform longitudinal studies in patients with oral lesions using cutting edge autofluorescence and microendoscopy technology with automated diagnostic algorithms. In an animal model of oral cancer, we will combine optical imaging and novel tissue preparation techniques, which render tissue optically transparent and macromolecular permeable, to assess the temporal and spatial correlations of molecular alterations to phenotypic changes during development and progression of oral cancer. With this data, we propose to develop and validate predictive models relating RROMs to malignant transformation.
描述(由申请人提供):口腔癌是全球第六个最常见的癌症。尽管口腔进行筛查容易获得,但口腔癌的占所有癌症的5年生存率之一。人们认为口腔癌是由于癌症癌化而引起的,通常,粘液表面的广泛区域会响应烟草和酒精暴露,会产生亚临床的致癌变化。口腔癌的不良结局主要是因为:(1)大多数患者在后期被诊断出来,因为使患者处于肿瘤风险的分子变化通常不会引起临床可见的病变,并且(2)大部分患者接受口腔癌治疗的患者随后会发生癌症,因为治疗后癌症的治疗持续不断,并且在临床上持续存在临床可见。口腔癌的发展和进展最终是一个分子过程,反映了风险野外风险中遗传变化的复杂连续。最终,肿瘤发射干细胞会在粘膜危险中产生侵略性克隆,导致恶性进展。尽管已经取得了很大的进步来了解与口腔癌进展相关的分子改变,但这项研究尚未导致早期检测的改善,主要是因为分子分析方法昂贵,并且只能使用从侵入性活检获得的组织进行。越来越多的证据表明,关键的分子改变会导致表型变化,可以在护理点进行临床测量。我们小组和其他人的最新研究表明,与视觉检查相比,多模式光学成像可以对组织荧光和核形态计量学的变化进行图像变化,以鉴定高级口服前癌和早期癌症,并显着提高敏感性和特异性。此外,光学性质的变化与与肿瘤进展相关的分子标记密切相关。该建议的目的是验证多模式光学成像改善早期检测的能力,并确定是否可以使用与风险相关的光学标记(RROM)来预测恶性进展的可能性。我们将使用自动诊断算法的尖端自动荧光和微观镜检查技术对口腔病变的患者进行纵向研究。在口腔癌的动物模型中,我们将结合光学成像和新型的组织制备技术,这些技术使组织具有光学透明和大分子渗透性,以评估分子改变与口腔癌发育过程中表型变化的时间和空间相关性。通过这些数据,我们建议开发和验证将RROM与恶性转化相关的预测模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ann M Gillenwater其他文献
Ann M Gillenwater的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ann M Gillenwater', 18)}}的其他基金
Deep learning microscope for slide-free and digital histology
用于无载玻片和数字组织学的深度学习显微镜
- 批准号:
10503039 - 财政年份:2022
- 资助金额:
$ 64.07万 - 项目类别:
Deep learning microscope for slide-free and digital histology
用于无载玻片和数字组织学的深度学习显微镜
- 批准号:
10664026 - 财政年份:2022
- 资助金额:
$ 64.07万 - 项目类别:
Mobile Imaging for Oral Cancer Screening Programs in Rural US Settings
美国农村地区口腔癌筛查项目的移动成像
- 批准号:
10396044 - 财政年份:2021
- 资助金额:
$ 64.07万 - 项目类别:
Mobile Imaging for Oral Cancer Screening Programs in Rural US Settings
美国农村地区口腔癌筛查项目的移动成像
- 批准号:
10193591 - 财政年份:2021
- 资助金额:
$ 64.07万 - 项目类别:
Precision Optical Guidance for Oral Biopsy Based on Next-Generation Hallmarks of Cancer
基于下一代癌症标志的口腔活检精密光学引导
- 批准号:
10565685 - 财政年份:2020
- 资助金额:
$ 64.07万 - 项目类别:
Precision Optical Guidance for Oral Biopsy Based on Next-Generation Hallmarks of Cancer
基于下一代癌症标志的口腔活检精密光学引导
- 批准号:
10326402 - 财政年份:2020
- 资助金额:
$ 64.07万 - 项目类别:
(PQC2) Optical Hallmarks of Aggressive Clones Within Oral Field Cancerization
(PQC2) 口腔癌化中侵袭性克隆的光学标志
- 批准号:
9319642 - 财政年份:2014
- 资助金额:
$ 64.07万 - 项目类别:
Oral Screening in India using Optical Imaging Technology
印度使用光学成像技术进行口腔筛查
- 批准号:
7290903 - 财政年份:2007
- 资助金额:
$ 64.07万 - 项目类别:
Oral Screening in India using Optical Imaging Technology
印度使用光学成像技术进行口腔筛查
- 批准号:
7463924 - 财政年份:2007
- 资助金额:
$ 64.07万 - 项目类别:
Oral Screening in India using Optical Imaging Technology
印度使用光学成像技术进行口腔筛查
- 批准号:
7615710 - 财政年份:2007
- 资助金额:
$ 64.07万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 64.07万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 64.07万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 64.07万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 64.07万 - 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
- 批准号:
10741022 - 财政年份:2023
- 资助金额:
$ 64.07万 - 项目类别: