Deep learning microscope for slide-free and digital histology
用于无载玻片和数字组织学的深度学习显微镜
基本信息
- 批准号:10664026
- 负责人:
- 金额:$ 70.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-12 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyAreaArtificial IntelligenceCellular MorphologyClassificationClinicalClinical DataClinical ResearchComputer AssistedComputer-Assisted DiagnosisConsumptionDiagnosisDiagnosticDyesEnsureEquipmentExcisionFormalinFreezingFresh TissueFrozen SectionsGoalsHematoxylin and Eosin Staining MethodHistologyHistopathologyHuman ResourcesImageImage AnalysisImage-Guided SurgeryImprove AccessLateralLight MicroscopeLightingMalignant NeoplasmsManualsMapsMasksMechanicsMethodsMicroscopeMicroscopyMicrotome - medical deviceMonitorMouth NeoplasmsNormal tissue morphologyNuclearOperative Surgical ProceduresOpticsOral Surgical ProceduresParaffinPathologistPathologyPatient CarePatient-Focused OutcomesPatientsPerformancePlayPopulationPreparationProceduresProcessProtocols documentationRecurrenceResectedResolutionResource-limited settingResourcesRoleRuralSamplingScanningServicesSliceSlideSpecific qualifier valueSpecimenSpeedStainsSurfaceSurgeonSurvival RateSystemTechnologyTestingThickThinnessTimeTissue SampleTissue imagingTissuesTrainingUltraviolet RaysVariantabsorptionalgorithm trainingautomated algorithmcancer surgerycancer survivalcellular imagingclinical infrastructurecontrast imagingcryostatdeep learningdesigndigitaldisease diagnosisexperiencefabricationfluorescence microscopegraphical user interfacehealth care qualityhistopathological examinationimprovedinnovationinstrumentlearning networklight emissionlow and middle-income countriesmachine learning algorithmmachine learning frameworkmalignant mouth neoplasmmetermouth squamous cell carcinomanoveloptical imagingpoint of careprogramsreconstructionresearch clinical testingscalpelsurvival outcometissue processingtooltumorultravioletvirtual
项目摘要
Project summary/abstract:
Anatomic histopathology plays a central role in disease diagnosis and in surgical procedure guidance to ensure
delivery of quality healthcare and treatment. At the time of surgery, for example, tumor margins are ideally
assessed with fast frozen section pathology to help ensure complete tumor resection while sparing normal tissue.
Unfortunately, the time- and labor-intensive slide preparation process requires expensive equipment and
specialized personnel, so it is not widely available in many settings including the rural US; even in settings with
the clinical infrastructure to perform frozen section, only a small fraction of the margin is manually examined. In
resource-limited global settings, a dire shortage of pathologists makes it more challenging to provide routine
diagnostic pathology. Therefore, there is a critical need for affordable tools to support quality histopathology
programs throughout the world. The goal of this proposal is to use recent advances in optical fabrication and
artificial intelligence to develop a new and affordable tool, the deep learning extended depth-of-field (DeepDOF)
platform, to rapidly examine fresh tissue resections without extensive slide preparation, while providing
computer-aided image analysis at the point of care. We will demonstrate and validate its use for tumor margin
assessment in patients with oral squamous cell carcinoma, the sixth most common malignancy worldwide.
In Aim 1, we will develop key modules of the DeepDOF platform for rapid, subcellular imaging of freshly resected
tissue samples. A deep learning network will be developed to design and optimize the DeepDOF microscope to
image highly irregular tissue surfaces (up to 200 µm) at subcellular resolution without mechanical refocusing; we
will combine it with fast vital dyes and deep ultraviolet illumination to achieve high contrast imaging. In Aim 2, we
will carry out a clinical evaluation of DeepDOF to determine its ability to assess oral tumor margin status
immediately following surgery. The clinical workflow of DeepDOF for intraoperative oral tumor margin
assessment will be optimized, and its performance will be evaluated by comparing to gold standard
histopathology. In Aim 3, we will develop a machine learning framework to identify positive margins in and assist
annotation of large-area, cellular-resolution DeepDOF maps of oral surgical specimens. Using clinical data
acquired in Aims 1 and 2, we will train an algorithm to complete segmentation tasks for identifying key diagnostic
features such as nuclear enlargement and abnormal clustering; the results will be further used to annotate and
quantify positive margins at the point of care. Taken together, we will develop a first microscopy platform with
AI-driven optics and algorithms for rapid and slide-free histology of intact tissue samples, and we will provide
important clinical evidence to show the DeepDOF platform can improve patient care during oral cancer surgeries.
Equipped with a computer-aided image analysis, the broader impact of the DeepDOF platform extends to global
settings including low- and middle-income countries that lack access to high quality histopathology services.
项目摘要/摘要:
解剖组织病理学在疾病诊断和外科手术指导中起着核心作用,以确保
提供优质的医疗保健和治疗。例如,在手术时,肿瘤边缘理想情况下是
用快速冷冻的剖面病理评估,以帮助确保在放大正常组织的同时完全切除肿瘤。
不幸的是,时间和劳动密集型的幻灯片准备过程需要昂贵的设备,并且
专业人员,因此在包括美国农村在内的许多情况下都无法广泛使用;即使在与
执行冷冻部分的临床基础设施,仅手动检查了一小部分边缘。在
资源有限的全球设置,严重的病理学家短缺使提供常规的挑战更大
诊断病理学。因此,对负担得起的工具迫切需要支持优质的组织病理学
全世界的计划。该建议的目的是利用光学制造和
人工智能开发一种新的可负担得起的工具,深度学习扩展深度(DeepDof)
平台,在提供的同时,可以快速检查新鲜的组织切除术而无需大量幻灯片准备
计算机辅助图像分析在护理点。我们将证明并验证其用于肿瘤边缘的使用
口服鳞状细胞癌患者的评估,这是全球第六个最常见的恶性肿瘤。
在AIM 1中,我们将开发深dof平台的关键模块,以快速,细胞化的刚切除的亚细胞成像
组织样品。将开发一个深度学习网络,以设计和优化深色显微镜
图像在亚细胞分辨率下高度不规则的组织表面(高达200 µm),而无需机械重新聚焦;
将其与快速生命的染料和深层紫外线照明相结合,以实现高对比度成像。在AIM 2中,我们
将对DeepDoF进行临床评估,以确定其评估口腔肿瘤状态的能力
手术后立即。术中口腔肿瘤边缘的DeepDOF的临床工作流程
评估将得到优化,并且将通过与黄金标准进行比较来评估其性能
组织病理学。在AIM 3中,我们将开发一个机器学习框架,以确定积极的利润并协助
口服外科手术标本的大面积,细胞分辨率深dof图的注释。使用临床数据
在AIMS 1和2中获得,我们将训练一种算法以完成分段任务以识别关键诊断
核扩张和异常聚类等特征;结果将进一步用于注释和
在护理点量化正缘。综上所述,我们将开发一个第一个显微镜平台
AI驱动的光学和算法,用于完整组织样品的快速和无滑动组织学,我们将提供
表明DeepDof平台的重要临床证据可以在口腔癌手术期间改善患者护理。
配备了计算机辅助图像分析,DeepDof平台的更广泛影响扩展到全球
包括缺乏高质量组织病理学服务的低收入和中等收入国家的设置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ann M Gillenwater其他文献
Ann M Gillenwater的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ann M Gillenwater', 18)}}的其他基金
Deep learning microscope for slide-free and digital histology
用于无载玻片和数字组织学的深度学习显微镜
- 批准号:
10503039 - 财政年份:2022
- 资助金额:
$ 70.11万 - 项目类别:
Mobile Imaging for Oral Cancer Screening Programs in Rural US Settings
美国农村地区口腔癌筛查项目的移动成像
- 批准号:
10396044 - 财政年份:2021
- 资助金额:
$ 70.11万 - 项目类别:
Mobile Imaging for Oral Cancer Screening Programs in Rural US Settings
美国农村地区口腔癌筛查项目的移动成像
- 批准号:
10193591 - 财政年份:2021
- 资助金额:
$ 70.11万 - 项目类别:
Precision Optical Guidance for Oral Biopsy Based on Next-Generation Hallmarks of Cancer
基于下一代癌症标志的口腔活检精密光学引导
- 批准号:
10565685 - 财政年份:2020
- 资助金额:
$ 70.11万 - 项目类别:
Precision Optical Guidance for Oral Biopsy Based on Next-Generation Hallmarks of Cancer
基于下一代癌症标志的口腔活检精密光学引导
- 批准号:
10326402 - 财政年份:2020
- 资助金额:
$ 70.11万 - 项目类别:
(PQC2) Optical Hallmarks of Aggressive Clones Within Oral Field Cancerization
(PQC2) 口腔癌化中侵袭性克隆的光学标志
- 批准号:
9319642 - 财政年份:2014
- 资助金额:
$ 70.11万 - 项目类别:
(PQC2) Optical Hallmarks of Aggressive Clones Within Oral Field Cancerization
(PQC2) 口腔癌化中侵袭性克隆的光学标志
- 批准号:
8912436 - 财政年份:2014
- 资助金额:
$ 70.11万 - 项目类别:
Oral Screening in India using Optical Imaging Technology
印度使用光学成像技术进行口腔筛查
- 批准号:
7290903 - 财政年份:2007
- 资助金额:
$ 70.11万 - 项目类别:
Oral Screening in India using Optical Imaging Technology
印度使用光学成像技术进行口腔筛查
- 批准号:
7463924 - 财政年份:2007
- 资助金额:
$ 70.11万 - 项目类别:
Oral Screening in India using Optical Imaging Technology
印度使用光学成像技术进行口腔筛查
- 批准号:
7615710 - 财政年份:2007
- 资助金额:
$ 70.11万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 70.11万 - 项目类别:
Upper airway collapsibility, loop gain and arousal threshold: an integrative therapeutic approach to obstructive sleep apnea
上气道塌陷、循环增益和唤醒阈值:阻塞性睡眠呼吸暂停的综合治疗方法
- 批准号:
10859275 - 财政年份:2023
- 资助金额:
$ 70.11万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 70.11万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 70.11万 - 项目类别:
Quantitative imaging of choroid plexus function and neurofluid circulation in Alzheimer's Disease Related Dementia
阿尔茨海默病相关痴呆症脉络丛功能和神经液循环的定量成像
- 批准号:
10718346 - 财政年份:2023
- 资助金额:
$ 70.11万 - 项目类别: