4D Virtual Catheter (vCath) Assessment of Hemodynamic Pathways in Aortopathy Pathogenesis
4D 虚拟导管 (vCath) 评估主动脉病发病机制中的血流动力学通路
基本信息
- 批准号:10092217
- 负责人:
- 金额:$ 11.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional4D MRIAddressAdultAffectAgeAnatomyAneurysmAortaAortic DiseasesAortic Valve StenosisAutomationBlood flowCaliberCardiovascular DiseasesCathetersCessation of lifeClinicalCohort AnalysisConfidence IntervalsCoupledDataDatabasesDetectionDevelopmentDiagnosticDiagnostic ImagingDiagnostic testsDilatation - actionDimensionsDiseaseDissectionExhibitsFemaleGenderGoalsGrowthGuidelinesHypertensionImageInterventionKineticsKnowledgeLifeLongevityLongitudinal StudiesLongterm Follow-upMagnetic Resonance ImagingManualsMeasurementMeasuresMethodsMorphologyMultivariate AnalysisOperative Surgical ProceduresOutcomePathogenesisPathologyPathway interactionsPatient-Focused OutcomesPatientsPatternPerformancePharmaceutical PreparationsPhenotypePhysiologicalPopulationRaceReproducibilityRetrospective StudiesRisk FactorsSeveritiesSeverity of illnessTechniquesThoracic aortaTimeage effectaortic valveaortic valve disorderbasebicuspid aortic valvecohortcongenital heart disorderdata pipelinedemographicsdisease phenotypeevidence baseflexibilityfrontierhealthy aginghemodynamicsimaging biomarkerimprovedimproved outcomein vivoinsightlarge datasetsmalemathematical modelnovelnovel diagnosticsoutcome predictionpressurerepairedrisk stratificationsexstandard of caretoolvirtual
项目摘要
SUMMARY / ABSTRACT
Aortic Valve Disease can result in multi-factorial complications including alerted post-valvular 3D blood flow
patterns and severe secondary aortopathy (aortic dilatation, aneurysm, and dissection). The current standard-
of-care, however, assesses aortic valve disease severity and thus therapy management (surgery vs.
conservative management) based on simplified measurements local to the valve. Paradoxically, it is well
known that similarly classified aortic valve disease patients, exhibit radically divergent clinical presentations
and outcomes. Evidence-based imaging biomarkers beyond aortic diameter capable of risk stratification are
thus urgently needed.
4D flow studies have shown that the aortic valve disease phenotype has a strong effect on changes in aortic
hemodynamics. Over the past years, we have assembled one of the largest aortic 4D MRI databases
worldwide with over 1300 patient exams in patients with aortic valve disease (among these: >880 BAV, >420
with TAV). Also, we have established a large healthy aging cohort across a broad range of ages (n=189
controls free of cardiovascular disease, 20-40 per age decade: 20-30, 31-40, 41-50, 51-60, 61-70 years) and
well distributed between genders (83 male, 106 female). However, 4D flow analysis across large cohorts has
been hindered by large data sets (4000-6000 images per patient), cumbersome manual analysis limiting
reducibility, and lack of exploitation of the comprehensive hemodynamic information (3D + time + 3-direction
flow). To address these limitations, we have recently developed a novel non-invasive 4D virtual Catheter
(vCath) technique that uses mathematical modeling to mimic the well-established invasive catheter in
quantifying hemodynamics. 4D vCath utilizes the full 4D flow MRI information for flexible quantification of aortic
3D hemodynamic with high degree of automation. An advantage of the 4D vCath concept over existing
analysis methods is rated to its intrinsic ability to simultaneously probe different basic (flow, peak velocity) and
advanced (kinetic energy KE, viscous energy loss EL, vorticity) hemodynamic factors along the entire thoracic
aorta. Our large cohort coupled with comprehensive 4D vCath analysis enables a unique opportunity to
conduct a well-powered retrospective study to identify hemodynamic factors associated with aortopathy
development.
This project will develop new multi-parametric hemodynamic-based aortopathy risk factors, which will provide
novel insights into aortopathy disease mechanisms and inform subsequent longitudinal outcome studies.
摘要/摘要
主动脉瓣疾病可导致多因素并发症,包括瓣膜后 3D 血流警报
模式和严重的继发性主动脉病变(主动脉扩张、动脉瘤和夹层)。现行标准——
然而,护理后评估主动脉瓣疾病的严重程度,从而评估治疗管理(手术与非手术治疗)。
保守管理)基于阀门本地的简化测量。矛盾的是,这很好
已知相似分类的主动脉瓣疾病患者表现出截然不同的临床表现
和结果。超出主动脉直径的基于证据的成像生物标志物能够进行风险分层
因而迫切需要。
4D 血流研究表明,主动脉瓣疾病表型对主动脉瓣的变化有很强的影响。
血流动力学。在过去的几年里,我们组建了最大的主动脉 4D MRI 数据库之一
全球范围内对主动脉瓣疾病患者进行了超过 1300 次检查(其中:>880 BAV、>420
与 TAV)。此外,我们还建立了一个涵盖广泛年龄范围的大型健康老龄化队列(n=189)
控制无心血管疾病,每个年龄20-40岁:20-30、31-40、41-50、51-60、61-70岁)和
性别分布良好(83 名男性,106 名女性)。然而,跨大群体的 4D 流分析已经
受到大数据集(每个患者 4000-6000 张图像)、繁琐的手动分析限制的阻碍
可还原性,缺乏对综合血流动力学信息(3D + 时间 + 3 方向)的开发
流动)。为了解决这些限制,我们最近开发了一种新型非侵入性 4D 虚拟导管
(vCath) 技术,使用数学模型来模拟成熟的侵入性导管
量化血流动力学。 4D vCath 利用完整的 4D 血流 MRI 信息对主动脉进行灵活量化
3D血流动力学,自动化程度高。 4D vCath 概念相对于现有技术的优势
分析方法根据其同时探测不同基本(流量、峰值速度)和
整个胸部的高级血流动力学因素(动能 KE、粘性能量损失 EL、涡量)
主动脉。我们的大型队列与全面的 4D vCath 分析相结合,为您提供了独特的机会
进行一项强有力的回顾性研究,以确定与主动脉病相关的血流动力学因素
发展。
该项目将开发新的基于多参数血流动力学的主动脉病危险因素,这将提供
对主动脉病疾病机制的新见解并为后续的纵向结果研究提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammed Elbaz其他文献
Mohammed Elbaz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
主动脉瓣介导的血流模式致升主动脉重构的4D Flow MRI可视化预测模型研究
- 批准号:82071991
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
基于4D Flow MRI探讨侧支循环影响颈内动脉重塑的机制研究
- 批准号:81801139
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
4D PC-MRI血流动力学参数与主动脉夹层假腔血栓化的关系及模拟预测研究
- 批准号:81770474
- 批准年份:2017
- 资助金额:55.0 万元
- 项目类别:面上项目
基于4D血流MRI成像的左心房室流场变化介导的炎症反应在房颤心肌纤维化中的始动作用及机制研究
- 批准号:81601462
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 11.91万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 11.91万 - 项目类别:
A computational approach combining 4D Flow and CFD for improved determination of cerebral hemodynamics
结合 4D Flow 和 CFD 的计算方法可改进脑血流动力学测定
- 批准号:
10581283 - 财政年份:2023
- 资助金额:
$ 11.91万 - 项目类别:
Development of 4D Flow MRI for Risk Stratification of Variceal Bleeding in Cirrhosis
开发 4D Flow MRI 用于肝硬化静脉曲张出血风险分层
- 批准号:
10538641 - 财政年份:2021
- 资助金额:
$ 11.91万 - 项目类别:
A comprehensive deep learning framework for MRI reconstruction
用于 MRI 重建的综合深度学习框架
- 批准号:
10382334 - 财政年份:2021
- 资助金额:
$ 11.91万 - 项目类别: