Kidney Microphysiological Analysis Platforms (MAP) to Optimize Function and Model Disease
用于优化功能和疾病模型的肾脏微生理分析平台 (MAP)
基本信息
- 批准号:10226203
- 负责人:
- 金额:$ 100.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-25 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAcuteAcute DiseaseAdultAffectAllelesApoptosisArchitectureBasement membraneBiocompatible MaterialsBiologicalBiologyBlood VesselsCRISPR/Cas technologyCell CommunicationCell CycleCellsCellular StructuresCharacteristicsChronic DiseaseChronic Kidney FailureClinical SciencesClustered Regularly Interspaced Short Palindromic RepeatsCystCystic Kidney DiseasesCystic kidneyCytoskeletonDevelopmentDevicesDiseaseDisease modelDistalDrug toxicityElectroencephalographyEndothelial CellsEndotheliumEngineeringEpithelialEpithelial CellsEpithelial PhysiologyExtracellular MatrixGeneticGenetic DiseasesGenetic ModelsGrowth FactorHumanImageIn VitroIndividualInduced MutationInjuryKidneyKidney DiseasesLaboratoriesMendelian disorderMicrofabricationMicrofluidicsModelingMonitorMutationOrganoidsPatientsPerfusionPericytesPharmaceutical PreparationsPhysiologic MonitoringPhysiologicalPopulationPrevalencePreventiveProcessPropertyRenal glomerular diseaseReporterReproducibilityResearch PersonnelSideSignal TransductionStructureSystemTechniquesTestingTherapeuticTherapeutic AgentsTimeTissuesToxic effectToxicity TestsTubular formationWorkbioprintingcostdesigndesign and constructiondifferentiation protocoldisease phenotypedrug developmentdrug discoverydrug efficacydrug testingefficacy testingexperiencegenome editingglomerular basement membranehuman pluripotent stem cellhuman tissueinduced pluripotent stem cellinnovationkidney cellkidney vascular structuremicrophysiology systemmutantnephron progenitornephrotoxicitynew technologynon-geneticnovelorgan on a chipplanar cell polaritypodocytepreventprogramsresponsescreeningstem cell biologystem cellsuptakevector
项目摘要
Project Summary
Approximately 10% of the world's adult population has chronic kidney disease (CKD) for which there are very
few effective preventive or stabilizing therapeutic options. In addition, 30% of newly developed drugs are not
advanced because of nephrotoxicity. We have developed efficient directed differentiation protocols to generate
nephron progenitor cells (NPCs) and 3D kidney organoids from human pluripotent stem cells (hPSCs). At
present, however, there are no effective platforms that integrate these kidney cells and vascularized organoids
within microphysiological systems in vitro to develop effective kidney models for interrogation of nephrotoxicity
and drug efficacy. Our proposal unites expertise in kidney organoids and disease, microphysiological systems,
and bioprinting led by three experienced investigators (Bonventre, Lee and Lewis) in a unique effort to create
these needed model platforms. In Specific Aim 1 we will develop efficient processes to direct differentiation of
hiPSCs into kidney podocytes, tubular epithelial cells, and endothelial cells endowed with differentiated
features for integration into microphysiological analysis platforms (MAP) and bioprinted structures. We create
genetic models of disease and reporter lines that signal differentiation characteristics to optimize differentiation
protocols and to monitor physiological parameters. In Specific Aim 2 we will design, construct, and
characterize an integrated kidney MAP to evaluate the function of hPSC-derived kidney podocytes, endothelial
and epithelial cells as well as kidney organoids. We will also use this platform to create a model of a
glomerulus that will have differentiated podocytes on an extracellular matrix (to mimic the glomerular basement
membrane) and hiPSC-derived endothelial cells on the other side of the basement membrane. The MAP will
be optimized to interrogate basic kidney biology and pathobiology of both non-genetic and genetic disease
involving kidney cysts or podocyte injury and test responses to putative therapeutic agents. In Specific Aim 3
we will bioprint a 3D kidney model that contains convoluted proximal tubules, pericytes and endothelial-lined
vascular structures with controlled, physiologically relevant system. Modeled tubules and vasculature will be
perfused through a open lumens. The ECM composition will be optimized to support confluent epithelialization
using proximal and distal tubule cells, podocytes, and endothelial cells derived from hiPSCs. We will
characterize polarized drug uptake, toxicity, and vectorial transport through the interstitium (ECM) as well as
cell-cell interactions among the epithelial cells, interstitium and endothelium-lined channels to create and
validate vascularized kidney models composed of cells derived from healthy and patients with cystic disease
that affects the tubule and glomerular disease that affects the podocyte. Our program, with well-established
milestones, will result in novel models to test kidney toxicity and drug efficacy.
项目摘要
世界上约有10%的成年人口患有慢性肾脏疾病(CKD)
很少有效的预防或稳定治疗选择。此外,有30%的新药不是
由于肾毒性而先进。我们已经开发了有效的定向分化协议来生成
肾单位祖细胞(NPC)和来自人多能干细胞(HPSC)的3D肾脏器官。在
然而,目前没有有效的平台可以整合这些肾细胞和血管化的类器官
在体外的微生物生理系统中,以开发有效的肾脏模型来询问肾毒性
和药物疗效。我们的建议将肾脏器官和疾病的专业知识团结起来,微生物生理系统,
由三名经验丰富的调查员(Bonventre,Lee和Lewis)领导的生物打印,以创建独特的努力
这些需要的模型平台。在特定目标1中,我们将开发有效的流程,以指导分化的
HIPSC进入肾脏足细胞,管状上皮细胞和内皮细胞,并具有分化
集成到微生物生理分析平台(MAP)和生物打印结构中的特征。我们创建
疾病和记者线的遗传模型,这些疾病和记者线的遗传模型可以发出分化特征以优化分化
协议并监视生理参数。在特定目标2中,我们将设计,构造和
表征集成的肾脏图来评估HPSC衍生的肾脏足细胞的功能,内皮
和上皮细胞以及肾脏器官。我们还将使用此平台创建一个模型
肾小球将在细胞外基质上具有分化的足细胞(模仿肾小球基底)
膜)和基底膜另一侧的HIPSC衍生的内皮细胞。地图将
优化以询问非遗传和遗传疾病的基本肾脏生物学和病理学
涉及肾脏囊肿或足细胞损伤以及对假定治疗剂的测试反应。在特定目标3中
我们将生物构图一个3D肾脏模型,该模型包含复杂的近端小管,周细胞和内皮衬里
具有控制,生理相关系统的血管结构。模型的小管和脉管系统将是
通过开放的流明灌注。 ECM组成将被优化以支持汇合上皮化
使用来自HIPSC的近端和远端小管细胞,足细胞和内皮细胞。我们将
表征了两极分化的药物摄取,毒性和通过间质(ECM)的载体运输以及
上皮细胞之间的细胞 - 细胞相互作用
验证由健康和囊性疾病患者衍生的细胞组成的血管化肾脏模型
影响影响足细胞的小管和肾小球疾病。我们的计划,建立了良好的
里程碑将导致新型模型测试肾脏毒性和药物功效。
项目成果
期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bioengineered Kidney Models: Methods and Functional Assessments.
- DOI:10.1093/function/zqab026
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Rizki-Safitri A;Traitteur T;Morizane R
- 通讯作者:Morizane R
Nephrotoxicity Assessment with Human Kidney Tubuloids using Spherical Nucleic Acid-Based mRNA Nanoflares.
- DOI:10.1021/acs.nanolett.1c01840
- 发表时间:2021-07-14
- 期刊:
- 影响因子:10.8
- 作者:Wiraja, Christian;Mori, Yutaro;Ichimura, Takaharu;Hwang, Jangsun;Xu, Chenjie;Bonventre, Joseph, V
- 通讯作者:Bonventre, Joseph, V
Energy depletion by cell proliferation sensitizes the kidney epithelial cells to injury.
细胞增殖造成的能量消耗使肾上皮细胞对损伤敏感。
- DOI:10.1152/ajprenal.00023.2023
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Galichon,Pierre;Lannoy,Morgane;Li,Li;Serre,Justine;Vandermeersch,Sophie;Legouis,David;Valerius,MTodd;Hadchouel,Juliette;Bonventre,JosephV
- 通讯作者:Bonventre,JosephV
3D proximal tubule-on-chip model derived from kidney organoids with improved drug uptake.
- DOI:10.1038/s41598-022-19293-3
- 发表时间:2022-09-02
- 期刊:
- 影响因子:4.6
- 作者:Aceves, Jeffrey O.;Heja, Szilvia;Kobayashi, Kenichi;Robinson, Sanlin S.;Miyoshi, Tomoya;Matsumoto, Takuya;Schaffers, Olivier J. M.;Morizane, Ryuji;Lewis, Jennifer A.
- 通讯作者:Lewis, Jennifer A.
Immune-infiltrated kidney organoid-on-chip model for assessing T cell bispecific antibodies.
用于评估 T 细胞双特异性抗体的免疫浸润肾类器官芯片模型。
- DOI:10.1073/pnas.2305322120
- 发表时间:2023
- 期刊:
- 影响因子:11.1
- 作者:Kroll,KatharinaT;Mata,MarianaM;Homan,KimberlyA;Micallef,Virginie;Carpy,Alejandro;Hiratsuka,Ken;Morizane,Ryuji;Moisan,Annie;Gubler,Marcel;Walz,Antje-Christine;Marrer-Berger,Estelle;Lewis,JenniferA
- 通讯作者:Lewis,JenniferA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH VINCENT BONVENTRE其他文献
JOSEPH VINCENT BONVENTRE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH VINCENT BONVENTRE', 18)}}的其他基金
Engineering RNA editing tools for the generation of functional tRNA-derived small RNAs in the kidney
用于在肾脏中生成功能性 tRNA 衍生小 RNA 的工程 RNA 编辑工具
- 批准号:
10751516 - 财政年份:2023
- 资助金额:
$ 100.61万 - 项目类别:
Kidney Microphysiological Analysis Platforms (MAP) to Optimize Function and Model Disease
用于优化功能和疾病模型的肾脏微生理分析平台 (MAP)
- 批准号:
10018126 - 财政年份:2017
- 资助金额:
$ 100.61万 - 项目类别:
Kidney Microphysiological Analysis Platforms (MAP) to Explore SARS-CoV-2 Receptors and Inhibitors. A supplement to Parent Grant: Kidney Microphysiological Analysis Platforms (MAP) to Optimize Function
用于探索 SARS-CoV-2 受体和抑制剂的肾脏微生理分析平台 (MAP)。
- 批准号:
10179916 - 财政年份:2017
- 资助金额:
$ 100.61万 - 项目类别:
Organ Design and Engineering Training Program (ODET Program)
器官设计与工程培训项目(ODET项目)
- 批准号:
9096101 - 财政年份:2014
- 资助金额:
$ 100.61万 - 项目类别:
Harvard Summer Research Program in Kidney Medicine
哈佛大学肾脏医学夏季研究项目
- 批准号:
8670647 - 财政年份:2014
- 资助金额:
$ 100.61万 - 项目类别:
Organ Design and Engineering Training Program (ODET Program)
器官设计与工程培训项目(ODET项目)
- 批准号:
10681212 - 财政年份:2014
- 资助金额:
$ 100.61万 - 项目类别:
Organ Design and Engineering Training Program (ODET Program)
器官设计与工程培训项目(ODET项目)
- 批准号:
10246782 - 财政年份:2014
- 资助金额:
$ 100.61万 - 项目类别:
Organ Design and Engineering Training Program (ODET Program)
器官设计与工程培训项目(ODET项目)
- 批准号:
10441516 - 财政年份:2014
- 资助金额:
$ 100.61万 - 项目类别:
Harvard Summer Research Program in Kidney Medicine
哈佛大学肾脏医学夏季研究项目
- 批准号:
9534224 - 财政年份:2014
- 资助金额:
$ 100.61万 - 项目类别:
Harvard Summer Research Program in Kidney Medicine
哈佛大学肾脏医学夏季研究项目
- 批准号:
10380632 - 财政年份:2014
- 资助金额:
$ 100.61万 - 项目类别:
相似国自然基金
直书写3D打印应变传感器性能退化机制与耐久性设计方法
- 批准号:12372078
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
3D打印工厂社群建模及其客户化大批量群智生产机理与方法
- 批准号:52375512
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
全固态钠离子电池的3D打印制备及性能研究
- 批准号:52372090
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 100.61万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 100.61万 - 项目类别:
Design of the Glomerulus and bOwman cApsuLe on a chip (GOAL)
芯片上肾小球和鲍曼胶囊的设计(目标)
- 批准号:
10810038 - 财政年份:2023
- 资助金额:
$ 100.61万 - 项目类别:
Validation of the Yucatan Minipig as a Preclinical Model for Wrist Bone Arthroplasty
尤卡坦小型猪作为腕骨关节置换术临床前模型的验证
- 批准号:
10574928 - 财政年份:2023
- 资助金额:
$ 100.61万 - 项目类别:
Studying Nanotoxicity Using Bioprinted Human Liver Tissues
使用生物打印的人类肝组织研究纳米毒性
- 批准号:
10654014 - 财政年份:2022
- 资助金额:
$ 100.61万 - 项目类别: