Flexible Bayesian Hierarchical Models for Estimating Inhalation Exposures
用于估计吸入暴露的灵活贝叶斯分层模型
基本信息
- 批准号:10060746
- 负责人:
- 金额:$ 37.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-15 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAutomobile DrivingBayesian AnalysisBayesian ModelingChemicalsCodeCommunitiesComputational algorithmComputer softwareComputersComputing MethodologiesConcentration measurementControlled EnvironmentDataData SetDatabasesDecision AnalysisDevelopmentEffectivenessEmu speciesEnvironmental HealthEquationExposure toFutureGenerationsHealth ProfessionalHybridsIceInhalation ExposureJudgmentKnowledgeLaboratoriesMarkov chain Monte Carlo methodologyMeasurementMeasuresMethodologyMethodsModelingMonitorPatternPearPositioning AttributeProcessPublic HealthResearchResearch PersonnelRisk AssessmentRisk ManagementSamplingScientific Advances and AccomplishmentsScientistSourceStatistical AlgorithmStatistical MethodsStatistical ModelsStatistical sensitivitySurfaceUncertaintyValidationWalkingWorkplaceair samplingbasecomputer generateddesignexperimental studyflexibilityimprovedinnovationmolecular dynamicsoperationparticlephysical modelphysical processprogramsresponsesemiparametricsimulationtheoriestooluser friendly softwareuser-friendlyventilation
项目摘要
Project Summary/Abstract
We propose to develop innovative statistical tools for melding exposure models and observational data aris-
ing from measurements of concentrations in controlled chamber conditions. As a first step, we will construct
a rich dataset of exposure scenarios in laboratory exposure chambers and real workplace settings, contain-
ing data on exposure determinants such as contaminant generation and ventilation rates and exposure mea-
surements. We will develop a comprehensive and computationally feasible Bayesian statistical framework for
melding the physical exposure models with experimental data from the workplace to effectively account for the
sources of uncertainty and produce reliable statistical inference (estimation and predictions). We will employ a
Bayesian framework to validate physical models from monitoring data. Our framework will also include formal
statistical measures for validating models with observed field data. We do so by assessing how adequately the
models capture features and patterns in the monitoring data, applying sensitivity analysis to the choice of priors,
and choosing or selecting a model among a set of competing models. We will also develop and disseminate a
user-friendly statistical software package that will enable researchers to implement the proposed methods for a
wide variety of physical models to analyze their data in a seamless and convenient manner. Upon successful
completion of the project, our developments will allow researchers and exposure managers to systematically
evaluate retrospective exposure, to predict current and future exposure in the absence of the working process
or operation, and to estimate exposure with only a small number of air samples with possibly high variability.
With only a few monitoring data points, our Bayesian melding framework will provide more precise estimates of
exposure than monitoring. With advances in computational methods and inexpensive software implementation,
we purport to exalt formal modeling to an indispensable position in the exposure assessors' armory.
项目概要/摘要
我们建议开发创新的统计工具来融合暴露模型和观测数据
作为第一步,我们将根据受控室条件下的浓度测量来构建。
实验室暴露室和真实工作场所环境中暴露场景的丰富数据集,包含-
荷兰国际集团关于暴露决定因素的数据,例如污染物的产生和通风率以及暴露测量
我们将开发一个全面且计算上可行的贝叶斯统计框架。
将物理暴露模型与工作场所的实验数据相结合,以有效地解释
不确定性的来源并产生可靠的统计推断(估计和预测)。
用于根据监测数据验证物理模型的贝叶斯框架还将包括正式的框架。
我们通过评估模型的充分性来实现这一点。
模型捕获监测数据中的特征和模式,将敏感性分析应用于先验的选择,
我们还将开发并传播一个模型。
用户友好的统计软件包将使研究人员能够实施所提出的方法
成功后,可以使用各种物理模型以无缝且方便的方式分析数据。
项目完成后,我们的开发将使研究人员和暴露管理人员能够系统地
评估回顾性暴露,在没有工作流程的情况下预测当前和未来的暴露
或操作,并仅使用少量可能具有高变异性的空气样本来估计暴露情况。
只需几个监测数据点,我们的贝叶斯融合框架将提供更精确的估计
随着计算方法的进步和廉价的软件实施,
我们旨在将形式建模提升到暴露评估者武器库中不可或缺的地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudipto Banerjee其他文献
Sudipto Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sudipto Banerjee', 18)}}的其他基金
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 37.12万 - 项目类别:
Flexible Bayesian Hierarchical Models for Estimating Inhalation Exposures
用于估计吸入暴露的灵活贝叶斯分层模型
- 批准号:
10295781 - 财政年份:2018
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical Modeling and Analysis for Large Spatially and Temporally Misaligned Data in Environmental Health Applications
环境健康应用中大型时空错位数据的分层建模和分析
- 批准号:
10094059 - 财政年份:2017
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical Statistical Modeling and Bayesian Melding for Occupational Exposure
职业暴露的分层统计模型和贝叶斯融合
- 批准号:
9074848 - 财政年份:2014
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical Statistical Modeling and Bayesian Melding for Occupational Exposure
职业暴露的分层统计模型和贝叶斯融合
- 批准号:
8733183 - 财政年份:2013
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical spatial process models for estimating and predicting health effects
用于估计和预测健康影响的分层空间过程模型
- 批准号:
7943904 - 财政年份:2009
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical spatial process models for estimating and predicting health effects
用于估计和预测健康影响的分层空间过程模型
- 批准号:
7815451 - 财政年份:2009
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical spatial process models for estimating and predicting health effects
用于估计和预测健康影响的分层空间过程模型
- 批准号:
7815451 - 财政年份:2009
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical spatial process models for estimating and predicting health effects
用于估计和预测健康影响的分层空间过程模型
- 批准号:
7943904 - 财政年份:2009
- 资助金额:
$ 37.12万 - 项目类别:
Hierachial Modeling Approaches for Geographical Boundary Analysis in Cancer Studi
癌症研究中地理边界分析的分层建模方法
- 批准号:
7216891 - 财政年份:2006
- 资助金额:
$ 37.12万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Using auxin to understand context-dependent hormone response
使用生长素了解背景依赖性激素反应
- 批准号:
10605909 - 财政年份:2023
- 资助金额:
$ 37.12万 - 项目类别:
Investigation and deployment of novel Bayesian inference algorithms in CAVATICA for identifying genomic variants underlying congenital heart defects in Down syndrome individuals
在 CAVATICA 中研究和部署新型贝叶斯推理算法,用于识别唐氏综合症个体先天性心脏缺陷的基因组变异
- 批准号:
10658217 - 财政年份:2023
- 资助金额:
$ 37.12万 - 项目类别:
Systems analysis of mechanisms driving response to immunotherapy in clear cell cancers
透明细胞癌免疫疗法驱动反应机制的系统分析
- 批准号:
10704140 - 财政年份:2022
- 资助金额:
$ 37.12万 - 项目类别:
Systems analysis of mechanisms driving response to immunotherapy in clear cell cancers
透明细胞癌免疫疗法驱动反应机制的系统分析
- 批准号:
10554766 - 财政年份:2022
- 资助金额:
$ 37.12万 - 项目类别:
The role of nitrogen metabolism in smooth muscle cell phenotypic plasticity
氮代谢在平滑肌细胞表型可塑性中的作用
- 批准号:
10535170 - 财政年份:2022
- 资助金额:
$ 37.12万 - 项目类别: