Hierarchical Modeling and Analysis for Large Spatially and Temporally Misaligned Data in Environmental Health Applications

环境健康应用中大型时空错位数据的分层建模和分析

基本信息

  • 批准号:
    10094059
  • 负责人:
  • 金额:
    $ 33.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The last decade has seen an explosion of interest in statistical modeling and analysis of spatiotemporally misaligned data and change-of-support problems, where different variables of scientific interest are observed at disparate scales making them difficult to be coherently modeled. This is especially relevant in environmental public health, where exposure data may be based upon data from monitoring data networks, while climate data are usually available as rasterized outputs from numerical models. The situation is further compounded by our objective of associating these factors with health outcomes (e.g. disease incidence, hospitalizations, mortality and so on), which are reported by public health sources as aggregated data over regions rather than at points. Furthermore, public health researchers today routinely encounter datasets exhibiting high-dimensional spatial misalignment or change-of-support, where “dimension” refers to one or all of the following: (a) the number of spatial units (e.g., geographically referenced coordinates), (b) the number of temporal units (time points) at which the variables have been observed, and (c) the number of outcomes and other variables being studied. We propose a versatile collection of easily implementable and innovative Bayesian statistical methods that, in conjunction with appropriate software, will offer more comprehensive and statistically reliable mapping and analysis for misaligned spatiotemporal data in high-dimensional settings. Our methods and software will help spatial analysts to establish relationships among health outcomes and environmetal and climate-related predictors. Our dissemination efforts will deliver our methodology to a far broader audience of health and environmental researchers and administrators than is currently accessible.
项目概要/摘要 在过去的十年里,人们对统计建模和时空分析的兴趣激增 数据不一致和支持变化问题,其中观察到具有科学意义的不同变量 不同的尺度使得它们很难进行连贯的建模,这在环境方面尤其重要。 公共卫生,其中暴露数据可能基于监测数据网络的数据,而气候 数据通常可以作为数值模型的栅格化输出获得,情况更加复杂。 我们的目标是将这些因素与健康结果(例如疾病发生率、住院治疗、 死亡率等),这些数据由公共卫生来源报告为各地区而不是各地区的汇总数据 此外,当今的公共卫生研究人员经常遇到表现出高维的数据集。 空间错位或支撑变化,其中“维度”指以下一项或全部:(a) 空间单位的数量(例如地理参考坐标),(b) 时间单位的数量(时间) 观察变量的点),以及(c)结果和其他变量的数量 我们提出了一系列易于实施和创新的贝叶斯统计方法。 与适当的软件相结合,将提供更全面和统计上可靠的映射 我们的方法和软件将在高维环境中对未对齐的时空数据进行分析。 帮助空间分析师建立健康结果与环境和气候相关的关系 我们的传播工作将把我们的方法论传播给更广泛的健康和人群。 环境研究人员和管理人员比目前可以接触到的更多。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward a diagnostic toolkit for linear models with Gaussian-process distributed random effects.
面向具有高斯过程分布随机效应的线性模型的诊断工具包。
  • DOI:
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Bose, Maitreyee;Hodges, James S;Banerjee, Sudipto
  • 通讯作者:
    Banerjee, Sudipto
Spatial Joint Species Distribution Modeling using Dirichlet Processes.
使用狄利克雷过程的空间联合物种分布建模。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Shirota, Shinichiro;Gelfand, Alan E;Banerjee, Sudipto
  • 通讯作者:
    Banerjee, Sudipto
Multivariate spatial meta kriging.
多元空间元克里金法。
  • DOI:
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Guhaniyogi, Rajarshi;Banerjee, Sudipto
  • 通讯作者:
    Banerjee, Sudipto
Efficient algorithms for Bayesian Nearest Neighbor Gaussian Processes.
贝叶斯最近邻高斯过程的高效算法。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Finley, Andrew O;Datta, Abhirup;Cook, Bruce C;Morton, Douglas C;Andersen, Hans E;Banerjee, Sudipto
  • 通讯作者:
    Banerjee, Sudipto
Bayesian modeling and uncertainty quantification for descriptive social networks.
描述性社交网络的贝叶斯建模和不确定性量化。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nemmers, Thomas;Narayan, Anjana;Banerjee, Sudipto
  • 通讯作者:
    Banerjee, Sudipto
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sudipto Banerjee其他文献

Sudipto Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sudipto Banerjee', 18)}}的其他基金

Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    $ 33.93万
  • 项目类别:
Flexible Bayesian Hierarchical Models for Estimating Inhalation Exposures
用于估计吸入暴露的灵活贝叶斯分层模型
  • 批准号:
    10060746
  • 财政年份:
    2018
  • 资助金额:
    $ 33.93万
  • 项目类别:
Flexible Bayesian Hierarchical Models for Estimating Inhalation Exposures
用于估计吸入暴露的灵活贝叶斯分层模型
  • 批准号:
    10295781
  • 财政年份:
    2018
  • 资助金额:
    $ 33.93万
  • 项目类别:
Hierarchical Statistical Modeling and Bayesian Melding for Occupational Exposure
职业暴露的分层统计模型和贝叶斯融合
  • 批准号:
    9074848
  • 财政年份:
    2014
  • 资助金额:
    $ 33.93万
  • 项目类别:
Hierarchical Statistical Modeling and Bayesian Melding for Occupational Exposure
职业暴露的分层统计模型和贝叶斯融合
  • 批准号:
    8733183
  • 财政年份:
    2013
  • 资助金额:
    $ 33.93万
  • 项目类别:
Hierarchical spatial process models for estimating and predicting health effects
用于估计和预测健康影响的分层空间过程模型
  • 批准号:
    7943904
  • 财政年份:
    2009
  • 资助金额:
    $ 33.93万
  • 项目类别:
Hierarchical spatial process models for estimating and predicting health effects
用于估计和预测健康影响的分层空间过程模型
  • 批准号:
    7815451
  • 财政年份:
    2009
  • 资助金额:
    $ 33.93万
  • 项目类别:
Hierarchical spatial process models for estimating and predicting health effects
用于估计和预测健康影响的分层空间过程模型
  • 批准号:
    7815451
  • 财政年份:
    2009
  • 资助金额:
    $ 33.93万
  • 项目类别:
Hierarchical spatial process models for estimating and predicting health effects
用于估计和预测健康影响的分层空间过程模型
  • 批准号:
    7943904
  • 财政年份:
    2009
  • 资助金额:
    $ 33.93万
  • 项目类别:
Hierachial Modeling Approaches for Geographical Boundary Analysis in Cancer Studi
癌症研究中地理边界分析的分层建模方法
  • 批准号:
    7216891
  • 财政年份:
    2006
  • 资助金额:
    $ 33.93万
  • 项目类别:

相似海外基金

Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
  • 批准号:
    10655968
  • 财政年份:
    2023
  • 资助金额:
    $ 33.93万
  • 项目类别:
MEDSCAN: Mobile Enabled Diagnostics for Schistosomiasis Control Analytics
MEDSCAN:用于血吸虫病控制分析的移动诊断
  • 批准号:
    10279946
  • 财政年份:
    2021
  • 资助金额:
    $ 33.93万
  • 项目类别:
MEDSCAN: Mobile Enabled Diagnostics for Schistosomiasis Control Analytics
MEDSCAN:用于血吸虫病控制分析的移动诊断
  • 批准号:
    10448347
  • 财政年份:
    2021
  • 资助金额:
    $ 33.93万
  • 项目类别:
MEDSCAN: Mobile Enabled Diagnostics for Schistosomiasis Control Analytics
MEDSCAN:用于血吸虫病控制分析的移动诊断
  • 批准号:
    10654812
  • 财政年份:
    2021
  • 资助金额:
    $ 33.93万
  • 项目类别:
Randomized trial of a leadership and organizational change strategy to improve the implementation and sustainment of digital measurement-based care in youth mental health services
对领导和组织变革策略进行随机试验,以改善青少年心理健康服务中基于数字测量的护理的实施和维持
  • 批准号:
    10405594
  • 财政年份:
    2019
  • 资助金额:
    $ 33.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了