Systems analysis of mechanisms driving response to immunotherapy in clear cell cancers
透明细胞癌免疫疗法驱动反应机制的系统分析
基本信息
- 批准号:10704140
- 负责人:
- 金额:$ 50.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-13 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAntibodiesAppearanceArchitectureAutomobile DrivingBayesian learningBiopsyCD8-Positive T-LymphocytesCancer PatientCarcinomaCell CommunicationCellsClear CellClear cell renal cell carcinomaClinicalClinical InvestigatorConventional (Clear Cell) Renal Cell CarcinomaDataDevelopmentDissectionEnvironmentGene ExpressionGenetic TranscriptionGoalsHumanImageImmuneImmune checkpoint inhibitorImmunotherapyInterventionKidneyKnowledgeLearningMalignant - descriptorMalignant Epithelial CellMalignant NeoplasmsMalignant neoplasm of ovaryMethodsMicrosatellite InstabilityModelingMolecularMolecular AnalysisMorphologyMusMutationOutcomeOvarianOvarian Clear Cell TumorOvarian Endometrioid AdenocarcinomaOvarian Serous AdenocarcinomaPatient SelectionPatientsPhenotypePropertyProteomicsSample SizeSignal TransductionStromal CellsSystems AnalysisSystems BiologyTP53 geneTestingTissue MicroarrayTransgenic ModelTranslationsTumor TissueValidationWorkcancer cellcancer typecell typecellular imagingcheckpoint therapycomputer frameworkdata resourceexperiencehuman diseaseimaging platformimmunogenicimprovedindexinginnovationlearning strategymouse modelnovelnovel markerobjective response ratepembrolizumabpredicting responsepredictive markerpreservationrare cancerresponsesingle-cell RNA sequencingtranscriptome sequencingtreatment responsetumortumor behaviortumor microenvironmenttumor-immune system interactions
项目摘要
Clear cell ovarian cancer (ccOC) is a rare and lethal cancer with few treatment options. Based on molecular
analysis ccOC appears intrinsically immunogenic but with an immunosuppressive tumor microenvironment,
similar to other ovarian cancer types. However, ccOC is very distinct from high grade serous ovarian
carcinoma. Strikingly, it is similar in gene expression profiles to more frequent clear cell renal cell carcinomas
(ccRCC), suggesting that clear cell cancers share intrinsic mechanistic or microenvironment properties, not just
morphological appearance. Around 25% of ccRCC respond well to immune checkpoint inhibitors (ICIs), but
markers for predicting response are lacking. The objective response rate for monotherapy pembrolizumab in
one study was 33.3% for ccOC patients; but, in general, it is unknown which clear cell cancer patients could
benefit from ICI treatment. Recent work has shown that tumor behavior is driven not just by cellular
composition, but also by the spatial organization of different cell types including immune and stromal cells, as
well as malignant cells themselves. Knowledge of clear cell cancer tumor microenvironments and their spatial
architecture is lacking. Addressing this gap will improve our understanding of mechanisms of response to ICIs
in clear cell cancers, including rare ones like ccOC, and improve selection of patients for immunotherapy.
This study will use systems biology approaches to (i) elucidate and compare the cell types and their
transcriptional states present in ccOC and ccRCC; (ii) characterize the spatial architecture of these cells within
tumors using the CODEX (CODetection by indEXing) single cell proteomic imaging platform; and (iii) model
and validate cell-cell interactions in the spatial tumor microenvironment that drive clear cell cancer response to
immunotherapy through extensions of causal signaling inference algorithms to incorporate spatial context, and
to optimize experimental validations in mouse models that maximize the information gain about interaction
networks. Similar intrinsic and tumor microenvironmental features shared by ccOC and ccRCC, will nominate
common mechanisms of immunotherapy response, and identify the subset of both who might benefit from
treatment with ICIs. Successful development and application of these methods to clear cell cancers will
establish a framework that can be applied to other cancer types, notably to rare ones.
The expected outcome of this proposal is a comprehensive definition and dissection of the tumor
microenvironment of ccRCC and ccOC. It will identify common features and mechanisms between these clear
cell cancers, providing a basis to extend the approach to other classes of cancer, opening new avenues for
treatment, particularly in rare cancer types.
透明细胞卵巢癌 (ccOC) 是一种罕见且致命的癌症,治疗选择很少。基于分子
分析 ccOC 具有内在的免疫原性,但具有免疫抑制性肿瘤微环境,
与其他卵巢癌类型相似。然而,ccOC 与高级浆液性卵巢非常不同
癌。引人注目的是,它的基因表达谱与更常见的透明细胞肾细胞癌相似
(ccRCC),表明透明细胞癌具有内在的机制或微环境特性,而不仅仅是
形态外观。大约 25% 的 ccRCC 对免疫检查点抑制剂 (ICIs) 反应良好,但是
缺乏预测反应的标记。帕博利珠单抗单药治疗的客观缓解率
一项针对 ccOC 患者的研究为 33.3%;但总的来说,尚不清楚哪些透明细胞癌患者可以
受益于 ICI 治疗。最近的研究表明,肿瘤行为不仅是由细胞驱动的
组成,还受不同细胞类型(包括免疫细胞和基质细胞)的空间组织的影响,如
以及恶性细胞本身。了解透明细胞癌肿瘤微环境及其空间
缺乏架构。解决这一差距将提高我们对 ICI 响应机制的理解
透明细胞癌,包括像 ccOC 这样的罕见癌症,并改善免疫治疗患者的选择。
这项研究将使用系统生物学方法来(i)阐明和比较细胞类型及其
ccOC 和 ccRCC 中存在的转录状态; (ii) 描述这些细胞的空间结构
使用 CODEX (CODetection by indEXing) 单细胞蛋白质组成像平台对肿瘤进行检测; (iii) 型号
并验证空间肿瘤微环境中细胞与细胞的相互作用,从而驱动透明细胞癌的反应
通过扩展因果信号推理算法以纳入空间背景来进行免疫治疗,以及
优化小鼠模型中的实验验证,最大化交互信息增益
网络。 ccOC 和 ccRCC 具有相似的内在和肿瘤微环境特征,将提名
免疫治疗反应的常见机制,并确定可能受益于的两者的子集
ICI 治疗。这些方法的成功开发和应用将有助于清除细胞癌
建立一个可应用于其他癌症类型,特别是罕见癌症的框架。
该提案的预期结果是对肿瘤的全面定义和解剖
ccRCC 和 ccOC 的微环境。它将确定这些明确的之间的共同特征和机制
细胞癌,为将该方法扩展到其他类型的癌症提供了基础,为治疗开辟了新的途径
治疗,特别是罕见癌症类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew J. Gentles其他文献
Mutation order in acute myeloid leukemia identifies uncommon patterns of evolution and illuminates phenotypic heterogeneity
急性髓系白血病的突变顺序确定了不常见的进化模式并阐明了表型异质性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
R. Majeti;Matthew Schwede;Katharina Jahn;Jack Kuipers;Linde A. Miles;Robert L. Bowman;Troy M Robinson;Ken Furudate;H. Uryu;Tomoyuki Tanaka;Yuya Sasaki;A. Ediriwickrema;Brooks A. Benard;Andrew J. Gentles;Ross L. Levine;N. Beerenwinkel;Koichi Takahashi - 通讯作者:
Koichi Takahashi
AML/T cell interactomics uncover correlates of patient outcomes and the key role of ICAM1 in T cell killing of AML.
AML/T 细胞相互作用组学揭示了患者结果的相关性以及 ICAM1 在 T 细胞杀伤 AML 中的关键作用。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:11.4
- 作者:
E. C. Sayitoglu;Bogdan A. Luca;A. P. Boss;B. C. Thomas;R. Freeborn;M. Uyeda;Pauline P. Chen;Yusuke Nakauchi;Colin Waichler;Norman Lacayo;R. Bacchetta;Ravi Majeti;Andrew J. Gentles;A. Cepika;M. Roncarolo - 通讯作者:
M. Roncarolo
Community assessment of methods to deconvolve cellular composition from bulk gene expression
从大量基因表达中解卷积细胞组成的方法的社区评估
- DOI:
10.1101/2022.06.03.494221 - 发表时间:
2024-05-03 - 期刊:
- 影响因子:0
- 作者:
Brian S. White;A. de Reyniès;Aaron M. Newman;J. Waterfall;Andrew Lamb;F. Petitprez;Yating Lin;Rogshan Yu;M. E. Guerrero;Sergii Domanskyi;Gianni Monaco;Verena Chung;Jineta Banerjee;Daniel Derrick;Alberto Valdeolivas;Haojun Li;Xu Xiao;Shun Wang;F;Wenxian Yang;C. A. Catania;Benjamin J. Lang;Thomas J. Bertus;Carlo Piermarocchi;F. Caruso;M. Ceccarelli;Thomas Yu;Xindi Guo;Julie A. Bletz;John Coller;H. Maecker;C. Duault;Vida Shokoohi;Shailja Patel;J. Liliental;Stockard Simon;Julio Saez;Laura M. Heiser;J. Guinney;Andrew J. Gentles - 通讯作者:
Andrew J. Gentles
Andrew J. Gentles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew J. Gentles', 18)}}的其他基金
Computational analysis of tumor ecosystems and their regulation and association with outcomes
肿瘤生态系统及其调节及其与结果关联的计算分析
- 批准号:
10568399 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
Systems analysis of mechanisms driving response to immunotherapy in clear cell cancers
透明细胞癌免疫疗法驱动反应机制的系统分析
- 批准号:
10554766 - 财政年份:2022
- 资助金额:
$ 50.25万 - 项目类别:
The prognostic landscape of gender- and ethnicity-specific immune influences on cancer outcomes
性别和种族特异性免疫对癌症结果影响的预后情况
- 批准号:
9888350 - 财政年份:2019
- 资助金额:
$ 50.25万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
Implementation of Eplet Mismatch Analysis in Pediatric Kidney Transplantation
Eplet 错配分析在小儿肾移植中的实施
- 批准号:
10739126 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
Computational Methods for Analyzing lmmunoglobulin Allelic Diversity in B cells
分析 B 细胞中免疫球蛋白等位基因多样性的计算方法
- 批准号:
10751541 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别:
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 50.25万 - 项目类别: