A universal and 3D-printed rat calvarium replacement system to enable for pan-cortical and sub-cortical recordings and optogenetics

通用 3D 打印大鼠颅骨替换系统,可实现全皮层和皮层下记录和光遗传学

基本信息

  • 批准号:
    10054940
  • 负责人:
  • 金额:
    $ 42.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Abstract While altered broad-scale brain dynamics are a key brain signature of major depressive disorder (MDD) and despite the plethora of powerful neuroscientific tools available in rodents, we actually do not currently have the capacity to assess these broad-scale neocortical dynamics in rodents with synaptic-timescale temporal and single neuron resolution. This is a key gap in the capacity of neuroscientists to study MDD-related biology via rodent models including the sustained threat model. Electrophysiologic and optogenetic approaches would be ideal to study how neocortical dynamics are orchestrated at baseline and are perturbed in disease, since many mechanisms may be synaptic in nature and both methods can operate at synaptic-timescales. We are a team of neuroscientists and mechanical engineers and we aim to develop a system to allow implantation of previously- impractical complex combinations of electrodes and optic fibers to record and manipulate the rat brain. The basis of our approach is a 3-dimensionally printed (3D printed) replacement for the dorsal rat skull – an “Interface Plate” - which we have already successfully attached to two rats with good survival. Unlike a natural skull the Interface Plate is custom designed and fabricated and so can be adapted to guide and secure many devices to the animal using a novel surgical approach including pre-surgical assembly. We aim to optimize our design for the Interface Plate to enable two experiments that will be novel and crucial to studies of sustained threat-related disturbances in neocortical dynamics. The first aim will use our 3D printed positioning and guide system to place 128 electrodes broadly across the entire dorsal neocortex. This will enable the first ever mapping of electrical activity at sub-millisecond resolution across the entire dorsal neocortex enabling us to capture events ranging from synaptic transmission to oscillations to neuromodulation, behavior and brain state transitions. We will additionally place electrodes at both superficial and deep layers to gather data about relative roles of these evolutionarily-conserved anatomical layers. In a second aim we will adapt our Interface Plate to enable recording in neocortex while simultaneously recording and optogenetically stimulating regions that play key roles in coordinating neocortex including the dorsal hippocampus, the medial dorsal nucleus of the thalamus (MDN) and the thalamic reticular nucleus (TRN). In this aim, 8 (and later 32) electrodes will be implanted in cortex for recording while into dorsal hippocampal CA1, MDN and TRN we will implant silicon probes with 64 recording channels and a coupled optic fiber. This will facilitate experiments examining and testing the roles of non- neocortical structures in coordinating the cortex both in and out of sustained threat conditions. The experiments enabled here will provide fundamental new data regarding the neocortex in health and disease. This work will also lead to the creation of a customizable and flexible new tool which we will make openly available to enable complex experiments in freely behaving animals for anyone in the neuroscience community.
抽象的 虽然广泛的大脑动力学改变是重度抑郁症(MDD)和 尽管啮齿类动物有大量强大的神经科学工具,但我们目前实际上还没有 通过突触时间尺度时间和时间来评估啮齿类动物的这些大范围的新皮质动态的能力 这是神经科学家通过单神经元分辨率研究 MDD 相关生物学能力的一个关键差距。 啮齿动物模型包括持续威胁模型。 非常适合研究新皮质动力学如何在基线上协调以及在疾病中受到干扰,因为许多 机制本质上可能是突触,并且两种方法都可以在突触时间尺度上运行。 由神经科学家和机械工程师组成,我们的目标是开发一种系统,允许植入先前的- 电极和光纤的复杂组合来记录和操纵大鼠大脑是不切实际的。 我们方法的基础是用 3D 打印(3D 打印)替代大鼠背侧头骨——一个“界面” 与天然头骨不同,我们已经成功将其附着在两只存活率良好的老鼠身上。 接口板是定制设计和制造的,因此可用于引导和固定许多设备 我们的目标是使用一种新颖的手术方法(包括手术前组装)来优化我们的设计。 接口板可实现两项实验,这对于持续威胁相关的研究来说是新颖且至关重要的 第一个目标是使用我们的 3D 打印定位和引导系统来定位。 128 个电极广泛覆盖整个背侧新皮质,这将实现有史以来的首次电图绘制。 整个背侧新皮质以亚毫秒分辨率的活动使我们能够捕获范围广泛的事件 从突触传递到振荡,再到神经调节、行为和大脑状态转换。 另外,在表层和深层放置电极,以收集有关这些电极相对作用的数据 在第二个目标中,我们将调整我们的接口板以实现记录。 在新皮质中,同时记录和光遗传学刺激区域,这些区域在 协调新皮质,包括背侧海马、丘脑背内侧核(MDN)和 为了实现这一目标,将在丘脑网状核 (TRN) 中植入 8 个(后来是 32 个)电极。 在背侧海马 CA1、MDN 和 TRN 中进行记录,我们将植入具有 64 个记录的硅探针 通道和耦合光纤这将有助于实验检查和测试非通道的作用。 新皮质结构在持续威胁条件下协调皮质。 此处启用将提供有关健康和疾病中新皮质的基本新数据。 还导致创建一个可定制且灵活的新工具,我们将公开提供该工具以实现 神经科学界的任何人都可以在自由行为的动物中进行复杂的实验。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Manufacturing Processes of Implantable Microelectrode Array for In Vivo Neural Electrophysiological Recordings and Stimulation: A State-Of-the-Art Review.
用于体内神经电生理记录和刺激的植入式微电极阵列的制造工艺:最先进的综述。
  • DOI:
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi, Dongyang;Yao, Yao;Wang, Yi;Chen, Lei
  • 通讯作者:
    Chen, Lei
Flexible High-Resolution Force and Dimpling Measurement System for Pia and Dura Penetration During In Vivo Microelectrode Insertion Into Rat Brain.
灵活的高分辨率力和凹坑测量系统,用于将体内微电极插入大鼠大脑期间软脑膜和硬脑膜的穿透。
  • DOI:
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen, Lei;Hartner, Jeremiah;Dong, Tianshu;Li, Annie;Watson, Brendon;Shih, Albert
  • 通讯作者:
    Shih, Albert
Repurposing Cholinesterase Inhibitors as Antidepressants? Dose and Stress-Sensitivity May Be Critical to Opening Possibilities.
将胆碱酯酶抑制剂重新用作抗抑郁药?
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fitzgerald, Paul J;Hale, Pho J;Ghimire, Anjesh;Watson, Brendon O
  • 通讯作者:
    Watson, Brendon O
3D Printed Skull Cap and Benchtop Fabricated Microwire-Based Microelectrode Array for Custom Rat Brain Recordings.
3D 打印头盖骨和台式制造的基于微线的微电极阵列,用于定制大鼠脑部记录。
  • DOI:
  • 发表时间:
    2022-10-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi, Dongyang;Hartner, Jeremiah P;Ung, Brian S;Zhu, Harrison L;Watson, Brendon O;Chen, Lei
  • 通讯作者:
    Chen, Lei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brendon O Watson其他文献

Brendon O Watson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brendon O Watson', 18)}}的其他基金

Electrophysiologic characterization of circadian rhythms of prefrontal cortical network states in a diurnal rodent
昼夜啮齿动物前额皮质网络状态昼夜节律的电生理学特征
  • 批准号:
    10556475
  • 财政年份:
    2023
  • 资助金额:
    $ 42.9万
  • 项目类别:
Digital behavioral phenotyping and multi-region electrophysiology to determine behavioral and neural network changes underlying the stress response in mice
数字行为表型和多区域电生理学,以确定小鼠应激反应背后的行为和神经网络变化
  • 批准号:
    10397657
  • 财政年份:
    2021
  • 资助金额:
    $ 42.9万
  • 项目类别:
Digital behavioral phenotyping and multi-region electrophysiology to determine behavioral and neural network changes underlying the stress response in mice
数字行为表型和多区域电生理学,以确定小鼠应激反应背后的行为和神经网络变化
  • 批准号:
    10199475
  • 财政年份:
    2021
  • 资助金额:
    $ 42.9万
  • 项目类别:
Digital behavioral phenotyping and multi-region electrophysiology to determine behavioral and neural network changes underlying the stress response in mice
数字行为表型和多区域电生理学,以确定小鼠应激反应背后的行为和神经网络变化
  • 批准号:
    10577805
  • 财政年份:
    2021
  • 资助金额:
    $ 42.9万
  • 项目类别:
Role of waking activity in determining sleep-based modification of cortical circuits
清醒活动在确定基于睡眠的皮质回路修改中的作用
  • 批准号:
    9473810
  • 财政年份:
    2017
  • 资助金额:
    $ 42.9万
  • 项目类别:
Role of waking activity in determining sleep-based modification of cortical circuits
清醒活动在确定基于睡眠的皮质回路修改中的作用
  • 批准号:
    8948537
  • 财政年份:
    2015
  • 资助金额:
    $ 42.9万
  • 项目类别:
Circuit Mechanisms of Cortical Synchronizations
皮质同步的电路机制
  • 批准号:
    7255693
  • 财政年份:
    2005
  • 资助金额:
    $ 42.9万
  • 项目类别:
Circuit Mechanisms of Cortical Synchronizations
皮质同步的电路机制
  • 批准号:
    7047716
  • 财政年份:
    2005
  • 资助金额:
    $ 42.9万
  • 项目类别:
Circuit Mechanisms of Cortical Synchronizations
皮质同步的电路机制
  • 批准号:
    7459551
  • 财政年份:
    2005
  • 资助金额:
    $ 42.9万
  • 项目类别:
Circuit Mechanisms of Cortical Synchronizations
皮质同步的电路机制
  • 批准号:
    6936293
  • 财政年份:
    2005
  • 资助金额:
    $ 42.9万
  • 项目类别:

相似国自然基金

基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
  • 批准号:
    82303979
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
  • 批准号:
    52303036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
3D纳米打印复合金属硫化物阵列反应器光催化CO2还原制C2研究
  • 批准号:
    22378174
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
  • 批准号:
    52378167
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
  • 批准号:
    52375150
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
  • 批准号:
    10736961
  • 财政年份:
    2023
  • 资助金额:
    $ 42.9万
  • 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
  • 批准号:
    10734465
  • 财政年份:
    2023
  • 资助金额:
    $ 42.9万
  • 项目类别:
A novel breast cancer therapy based on secreted protein ligands from CD36+ fibroblasts
基于 CD36 成纤维细胞分泌蛋白配体的新型乳腺癌疗法
  • 批准号:
    10635290
  • 财政年份:
    2023
  • 资助金额:
    $ 42.9万
  • 项目类别:
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
  • 批准号:
    10629531
  • 财政年份:
    2023
  • 资助金额:
    $ 42.9万
  • 项目类别:
Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
  • 批准号:
    10729161
  • 财政年份:
    2023
  • 资助金额:
    $ 42.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了