Emergency Neurophysiological Assessment Bedside Logic Engine
紧急神经生理学评估床边逻辑引擎
基本信息
- 批准号:7828395
- 负责人:
- 金额:$ 95.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAdoptionAlgorithmsAutomated Pattern RecognitionBehaviorBlinkingBrainBrain InjuriesCardiacCephalicClinicalClinical DataClinical InformaticsComaComplexComputer softwareConsensusConsultationsCraniocerebral TraumaCritical CareDataDatabasesDecision AnalysisDetectionDiagnosisDiagnosticDiseaseDrug FormulationsDrug toxicityEmergency SituationEquipmentEvaluationExcisionFailureFamilyGenerationsGoalsGuidelinesHairHealth PersonnelHealth SciencesHematomaHigh Performance ComputingHourHuman ResourcesInformaticsInjuryIntensive CareInterventionJordanKnowledgeLearningLengthLinkLiteratureLogicMeasuresMedicalMedical RecordsMedical TechnologyMethodsMonitorMorphologic artifactsMovementNervous System TraumaNeurologicNeurological emergenciesNeurologistNeurologyNoiseNursesOntologyOregonPathologyPatient CarePatientsPatternPattern RecognitionPhysician AssistantsPhysiciansPhysiologic MonitoringPlaguePopulationProcessProtocols documentationReadingRiskSeizuresSignal TransductionSocietiesSourceStagingStatus EpilepticusSymptomsSyndromeSystemTaxonomyTechnologyTestingTimeTrainingUniversitiesVasospasmVisualWidespread DiseaseWorkclinical decision-makingclinically significantcomputerizedcostemergency service responderevidence baseexperienceimprovedmeetingsnervous system disorderneurological pathologyneuropathologyneurophysiologynew technologyoperationprogramspublic health relevancerelating to nervous systemrepositoryresearch and developmentsensorsimulationtext searchingtoolusability
项目摘要
DESCRIPTION (provided by applicant): Emergency Neurophysiological Assessment Bedside Logic Engine We propose to develop an intelligent clinical informatics search tool that is integrated with automated brain monitoring with dense array EEG (dEEG; 128 or 256 channels). Many forms of neurological injury, such as hematoma or nonconvulsive seizure, are difficult to diagnose in the emergency room, and yet this is the point at which they are often most effectively treated (Jordan, 1999). Failure to recognize treatable brain injury leads to extensive suffering for patients and families and costs to society, such that an inexpensive automated brain monitor could be highly cost-effective in the emergency context. Continuous monitoring of brain function can now be accomplished easily and inexpensively in the emergency setting with dEEG (Luu, et al., 2001), providing key neurophysiological information for emergency neurological assessment (Jordan, 1999, Procaccio et al., 2001). There are, however, both technical and professional challenges to make dEEG monitoring practical for routine use. Technically, continuous monitoring is required for many neurological conditions, and this is not practical with visual inspection of EEG traces or crude automated measures such as integrated amplitude. Reliable automated pattern recognition is required, yet in the past this has often failed to separate real neurological disorder from artifacts such as movement, eye blinks, and cardiac signals. There are also professional challenges, one in acquiring the brain data and another in interpreting it. First, EEG technologists are often not available in the emergency department, so that EEG sensor application must be easy enough for nurses and medical assistants who have completed a short, focused training protocol. Second, emergency physicians are not trained in EEG interpretation so they require assistance. Optimally, this would both access to consultation by an expert neurologist and an intelligent search engine that reads the dEEG pattern results and provides an evidence-based interpretation in relation to diagnostic questions to be evaluated. We propose a two-year research and development program to meet both these technical and professional challenges. We will begin with a intelligent search tool, the Clinical Decision Analysis (CDA) system from Lifecom, Inc. that has been proven effective for providing online guidance to a physician or physician's assistant in the emergency department. The CDA helps with evaluating symptoms in the context of medical evidence, hypothesizing disease states, ordering lab tests, and making diagnostic and treatment decisions. An extensive database of clinical evidence and guidelines is made available at the bedside, with contextual search tools that track the stages of evidence-gathering and clinical decisions required for emergency evaluation. We will develop a specialized version of the CDA for evaluation of emergent neurological disorders, and we will provide evidence on neural status from online monitoring of dEEG. Rapid (one minute) application of the dEEG sensor net by the first responder allows monitoring to begin when the patient is first contacted. Pattern recognition with the dEEG data is provided by high performance compute clusters: (1) to separate brain signals from noise (e.g., movement, cardiac, equipment artifacts) and (2) to recognize pathological brain states (e.g,. seizure, burst-suppression coma, drug toxicity, vasospasm, focal slowing due to hematoma). The fusion of automated neurophysiological monitoring with the intelligent diagnostic search tool will create the Emergency Neurophysiological Assessment Bedside Logic Engine (ENABLE). ENABLE can be seen as a new paradigm in which informatics allows a two-way exchange between clinical data gathering and clinical data interpretation. In supporting clinical data gathering, the knowledge assembled by an intelligent search tool (such as the clinical presentation of a patient with mild head trauma, together with expected complications such as hematoma) is used to provide a predictive analysis of the brain monitoring data, highlighting the patterns that may be most diagnostic in that context (such as the progression of regional EEG slowing that may signal a developing hematoma). Thus, the difficult challenge of pattern recognition is made easier by placing it in the continually developing diagnostic context framed by the informatics logic engine. The improved pattern recognition of neuropathology then paves the way to improved clinical decision making. Through the fusion of automated neurophysiological pattern recognition, ENABLE not only summarizes the patient's brain state for the physician, but it presents a set of rule-out and rule-in protocols that allow active hypothesis-testing, and additional data gathering, to inform the diagnostic decision. Instead of an intelligent search tool that begins only with the physician's queries and observations, ENABLE can act in the background to evaluate the patient's ongoing changes in neurophysiological state and to assemble an intelligent set of diagnostic options that are consistent with those changes. These are tested against the additional diagnostic and clinical data available on that patient, such that ENABLE can then set alarms, launch literature searches, suggest additional tests, and otherwise assist the diagnostic and treatment processes. Building ENABLE requires extending the CDA Knowledge Repository (KR) to recognize neurophysiological pathology in the dEEG signals and to link this pathology to neurological disease states and diagnostic syndromes. Our neurology consultant, Dr. Mark Holmes, is a clinical neurophysiologist who will work with Dr. Datena and other emergency physicians to extend the CDA KR to emergent neurological conditions. Given the capture and formulation of this clinical knowledge within the KR, we will turn to a key goal for the widespread adoption of ENABLE: a program of simulations that train medical personnel in emergency neurological evaluation, including integrated dEEG pattern recognition when this is available. Through this integration, ENABLE will offer the opportunity for a new form of intelligent clinical search tool that is linked directly to an advanced technology for automated physiological monitoring.
PUBLIC HEALTH RELEVANCE: This project would create an advanced computing technology for continuous brain monitoring in emergency and intensive care settings. A brain wave sensor net allows rapid application of a dense array of electroencephalographic (EEG) sensors with elementary training. Advanced computation methods allow automated detection of seizures and other forms of injury that put the brain at risk. The complete system will be integrated with clinical decision assistance software that will provide emergency physicians with guidelines for incorporating the brain status information into immediate medical decisions, and for seeking expert neurological review when necessary. Network access technology will facilitate remote review by expert neurologists, and a training protocol will provide first-responder usability for emergency technicians and physicians without training in clinical neurophysiology.
描述(由申请人提供):紧急神经生理学评估床边逻辑引擎我们建议开发一种智能临床信息学搜索工具,该工具与密集阵列脑电图(dEEG;128 或 256 通道)的自动大脑监测集成。许多形式的神经损伤,如血肿或非惊厥性癫痫,很难在急诊室诊断,但此时往往是治疗最有效的时刻(Jordan,1999)。未能识别可治疗的脑损伤会给患者和家庭带来巨大的痛苦,并给社会带来成本,因此廉价的自动脑部监测仪在紧急情况下可能具有很高的成本效益。现在可以在紧急情况下使用 dEEG 轻松且廉价地实现脑功能的连续监测(Luu 等,2001),为紧急神经学评估提供关键的神经生理学信息(Jordan,1999;Procaccio 等,2001)。然而,要使 dEEG 监测切实可行于日常使用,还存在技术和专业挑战。从技术上讲,许多神经系统疾病需要连续监测,而这对于目视检查脑电图痕迹或粗略的自动化测量(例如积分幅度)来说是不切实际的。需要可靠的自动模式识别,但在过去,这往往无法将真正的神经系统疾病与运动、眨眼和心脏信号等伪影区分开来。还有专业挑战,一个是获取大脑数据,另一个是解释它。首先,急诊科通常没有脑电图技术人员,因此脑电图传感器的应用对于已经完成简短、集中的培训方案的护士和医疗助理来说必须足够容易。其次,急诊医生没有接受过脑电图解读方面的培训,因此他们需要帮助。最理想的情况是,这既可以接受神经科专家的咨询,也可以使用智能搜索引擎来读取 dEEG 模式结果,并提供与待评估的诊断问题相关的基于证据的解释。我们提出了一个为期两年的研究和开发计划,以应对这些技术和专业挑战。我们将从智能搜索工具 Lifecom, Inc. 的临床决策分析 (CDA) 系统开始,该系统已被证明可以有效地为急诊科的医生或医生助理提供在线指导。 CDA 有助于根据医学证据评估症状、假设疾病状态、安排实验室测试以及做出诊断和治疗决策。床边提供了广泛的临床证据和指南数据库,并提供上下文搜索工具,可跟踪紧急评估所需的证据收集和临床决策的阶段。我们将开发一个专门版本的 CDA,用于评估突发神经系统疾病,并且我们将通过 dEEG 在线监测提供神经状态的证据。急救人员快速(一分钟)应用 dEEG 传感器网络,可以在第一次联系患者时开始监测。高性能计算集群提供 dEEG 数据的模式识别:(1) 将大脑信号与噪声(例如运动、心脏、设备伪影)分离;(2) 识别病理性大脑状态(例如癫痫发作、突发-抑制昏迷、药物毒性、血管痉挛、血肿引起的病灶减慢)。自动神经生理学监测与智能诊断搜索工具的融合将创建紧急神经生理学评估床边逻辑引擎(ENABLE)。 ENABLE 可以被视为一种新的范例,其中信息学允许临床数据收集和临床数据解释之间的双向交换。在支持临床数据收集方面,智能搜索工具收集的知识(例如轻度头部外伤患者的临床表现,以及血肿等预期并发症)用于提供脑部监测数据的预测分析,突出显示在这种情况下可能最具诊断意义的模式(例如区域脑电图进展缓慢可能预示着血肿正在发展)。因此,通过将模式识别置于由信息学逻辑引擎构建的不断发展的诊断环境中,模式识别的艰巨挑战变得更加容易。神经病理学模式识别的改进为改善临床决策铺平了道路。通过融合自动神经生理学模式识别,ENABLE 不仅为医生总结了患者的大脑状态,而且还提供了一组排除和纳入协议,允许主动假设检验和额外的数据收集,以告知医生诊断决定。 ENABLE 不是仅从医生的查询和观察开始的智能搜索工具,而是可以在后台运行,评估患者神经生理状态的持续变化,并组装一组与这些变化一致的智能诊断选项。这些数据会根据该患者可用的附加诊断和临床数据进行测试,以便 ENABLE 可以设置警报、启动文献搜索、建议附加测试以及以其他方式协助诊断和治疗过程。构建 ENABLE 需要扩展 CDA 知识库 (KR),以识别 dEEG 信号中的神经生理病理学,并将该病理学与神经疾病状态和诊断综合征联系起来。我们的神经病学顾问 Mark Holmes 博士是一位临床神经生理学家,他将与 Datena 博士和其他急诊医生合作,将 CDA KR 扩展到紧急神经系统疾病。鉴于在 KR 中捕获和制定了这些临床知识,我们将转向广泛采用 ENABLE 的一个关键目标:一个模拟程序,用于培训医务人员进行紧急神经学评估,包括集成 dEEG 模式识别(如果可用)。通过这种整合,ENABLE 将提供一种新型智能临床搜索工具的机会,该工具直接与自动生理监测的先进技术相关联。
公共健康相关性:该项目将创建一种先进的计算技术,用于在紧急情况和重症监护环境中进行连续脑部监测。脑电波传感器网络允许通过基本训练快速应用密集的脑电图 (EEG) 传感器阵列。先进的计算方法可以自动检测癫痫发作和其他形式的使大脑处于危险之中的损伤。完整的系统将与临床决策辅助软件集成,该软件将为急诊医生提供指导,将大脑状态信息纳入即时医疗决策,并在必要时寻求专家神经学审查。网络访问技术将促进神经科医生专家的远程审查,培训协议将为未经临床神经生理学培训的急救技术人员和医生提供急救人员的可用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Don M Tucker其他文献
Don M Tucker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Don M Tucker', 18)}}的其他基金
Home Sleep Therapy System for Mild Cognitive Impairment
用于轻度认知障碍的家庭睡眠治疗系统
- 批准号:
10547669 - 财政年份:2022
- 资助金额:
$ 95.47万 - 项目类别:
Improving Spatiotemporal Precision in Noninvasive Electrical Neuromodulation
提高无创电神经调节的时空精度
- 批准号:
9406395 - 财政年份:2019
- 资助金额:
$ 95.47万 - 项目类别:
Improving Spatiotemporal Precision in Noninvasive Electrical Neuromodulation
提高无创电神经调节的时空精度
- 批准号:
10082466 - 财政年份:2019
- 资助金额:
$ 95.47万 - 项目类别:
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Implementing and Scaling the STEADI Fall Prevention Algorithm Using a Conversational Relational Agent for Community-Dwelling Older Adults with and without Mild Cognitive Impairment (MCI).
使用对话关系代理为社区居住的患有或不患有轻度认知障碍 (MCI) 的老年人实施和扩展 STEADI 跌倒预防算法。
- 批准号:
10822816 - 财政年份:2023
- 资助金额:
$ 95.47万 - 项目类别:
The Center for Accelerating Practices to End Suicide through Technology Translation (CAPES)
通过技术转化加速结束自杀实践中心 (CAPES)
- 批准号:
10577117 - 财政年份:2023
- 资助金额:
$ 95.47万 - 项目类别:
Implementation of Continuum of Care Sepsis Phenotyping and Risk Stratification
脓毒症表型分析和风险分层连续护理的实施
- 批准号:
10429829 - 财政年份:2022
- 资助金额:
$ 95.47万 - 项目类别:
Implementation of Continuum of Care Sepsis Phenotyping and Risk Stratification
脓毒症表型分析和风险分层连续护理的实施
- 批准号:
10612933 - 财政年份:2022
- 资助金额:
$ 95.47万 - 项目类别:
CDR Administrative Supplement for COVID-19 Impacted NIMH Research
针对受新冠肺炎 (COVID-19) 影响的 NIMH 研究的 CDR 行政补充
- 批准号:
10617502 - 财政年份:2022
- 资助金额:
$ 95.47万 - 项目类别: