Implementation of Continuum of Care Sepsis Phenotyping and Risk Stratification
脓毒症表型分析和风险分层连续护理的实施
基本信息
- 批准号:10612933
- 负责人:
- 金额:$ 18.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAdmission activityAdoptionAlgorithmsAntibioticsArithmeticArtificial IntelligenceBiometryCaringCessation of lifeClassificationClinicalClinical Trials DesignComplexContinuity of Patient CareCritical CareDataData AnalysesDecision MakingDetectionDeteriorationDevelopmentDevelopment PlansDiagnosisDiseaseDocumentationEarly identificationEarly treatmentElectronic Health RecordEmergency MedicineEvolutionFoundationsGoalsHealth PersonnelHeart failureHeterogeneityHospitalizationHospitalsHourImmune responseInfectionInpatientsInternationalInterventionIntravenousInvestigationLiquid substanceMachine LearningMedication ErrorsMentorsModelingMyocardial InfarctionNatural Language ProcessingOrgan failurePatient CarePatient DischargePatient ReadmissionPatientsPatternPersonal SatisfactionPersonsPhenotypePhysiologyPilot ProjectsPneumoniaProviderPublic HealthResearchResearch PriorityRespiratory FailureResuscitationRiskScientistSeminalSepsisSeptic ShockSubgroupSyndromeTechnologyTestingTherapeuticTimeTrainingTranslatingTriageUpdateVasoconstrictor AgentsWorkacute carecareer developmentclinical phenotypeclinical practicecohortcombatcostdeep learning algorithmdeep learning modeldesigndissemination sciencefollow-uphigh riskhospice environmenthospital carehospital readmissionimplementation scienceimprovedinnovationlarge datasetsmachine learning algorithmmortalitymortality risknew technologynovelnovel strategiesnovel therapeuticsoperationpersonalized approachpersonalized carepersonalized interventionportabilityprofessorreadmission riskrecurrent infectionresearch and developmentrisk stratificationseptic patientstreatment responsewearable device
项目摘要
PROJECT SUMMARY/ABSTRACT
This proposal outlines a 5-year research and career development plan for Dr. Gabriel Wardi, an emergency
medicine intensivist and assistant professor at UCSD. The major objective of his research is the effective
implementation of deep-learning algorithms to clinical practice to improve care of sepsis patients. This K23
proposal outlines and provides support for his career development plan, specifically focusing on (1) the ability
to design meaningful sepsis studies and necessary statistical training, (2) strong understanding of machine-
learning approaches, and (3) a focus on implementation science to improve care of sepsis patients with novel
deep-learning algorithms. Dr. Wardi has assembled a diverse team of collaborative experts to support his
career development and mentor him consisting of Dr. Atul Malhotra, an internationally recognized expert in
critical care physiology and respiratory failure along with Dr. Shamim Nemati, a machine-learning expert with a
strong focus in prediction of sepsis in real-time. Additionally, his training team includes experts in
implementation science from the Dissemination and Implementation Science Center (DISC) at UCSD as well
as an expert in clinical trial design and biostatistics (Dr. Sonia Jain). Despite decades of research, sepsis
remains a major public health challenge. Current approaches to sepsis care emphasize “one-size fits all”
bundles that may result in patient harm in certain subgroups. Newer approaches to data analysis, using
multiple layers of non-linear arithmetic operations now allow for clustering of sepsis patients into novel clinical
phenotypes that may provide for more personalized care. The PI will evaluate potential phenotypes of sepsis
not present on admission (NPOA) in Aim 1. Prior investigations into phenotyping have been developed and
validated in patients present in the emergency department. Patients with sepsis NPOA have high mortality and
better quantification of phenotypes may help improve care by identifying novel groups. Dr. Wardi seeks to
evaluate 2 inter-related hypotheses in this aim: one is that phenotypes may represent disease trajectories that
are modifiable by accepted therapies (e.g. time to, and quantity of fluid resuscitation). The second is that novel
phenotypes exist in the inpatient setting. In his second aim, Dr. Wardi seeks to determine clinical mechanisms
of 30-day readmissions in sepsis patients through a variety of approaches, including identification of novel
clusters of sepsis patients at discharge and use of natural language processing of a large data set to identify
actionable reasons for readmissions. Finally, he seeks to determine if the application of a wearable patch to
sepsis patients discharged to a long-term acute care hospital when combined with a machine-learning
algorithm may reduce unanticipated 30-day sepsis readmissions. This research and career development plan
affords Dr. Wardi an impressive foundation to develop into a prominent clinician-scientist working to improve
care by developing and implementing novel approaches to detection and classification of sepsis patients. Dr.
Wardi is fully committed to improving the care of sepsis patients by embracing innovative strategies.
项目摘要/摘要
该建议概述了Gabriel Wardi博士的5年研究和职业发展计划,紧急情况
UCSD的医学强化主义者和助理教授。他的研究的主要目标是有效
对临床实践的深入学习算法,以改善败血症患者的护理。这个K23
提案概述并为他的职业发展计划提供支持,特别关注(1)能力
设计有意义的败血症研究和必要的统计培训,(2)对机器的强烈了解
学习方法,以及(3)专注于实施科学,以改善对新型败血症患者的护理
深度学习算法。沃迪博士已经组建了一个由合作专家组成的潜水团队,以支持他的
职业发展和指导他由Atul Malhotra博士组成,他是国际认可的专家
重症监护生理学和呼吸衰竭以及Shamim Nemati博士,机器学习专家
非常重点是实时预测败血症。此外,他的培训团队还包括
UCSD的传播与实施科学中心(DISS)的实施科学也
作为临床试验设计和生物统计学专家(Sonia Jain博士)。尽管进行了数十年的研究,败血症
仍然是一个主要的公共卫生挑战。当前的败血症护理方法强调“一件大小适合所有人”
可能导致某些亚组的患者伤害的束。较新的数据分析方法
现在,多层非线性算术操作可以将败血症患者聚集到新型临床上
可能提供更多个性化护理的表型。 PI将评估败血症的潜在表型
AIM 1中没有入院(NPOA)。
在急诊室的患者中得到验证。 NPOA患者的死亡率很高,
更好地量化表型可以通过识别新组来帮助改善护理。沃迪博士寻求
在此目的中评估2个相互关联的假设:一个是表型可以代表疾病轨迹
可通过接受的疗法(例如,流体复苏的时间和数量)进行修改。第二个小说
表型存在于住院环境中。在第二个目标中,沃迪博士试图确定临床机制
通过多种方法在败血症患者中进行30天的再入院,包括鉴定新颖的方法
出院和使用大型数据集的自然语言处理时,败血症患者集群以识别
可行的理由。最后,他试图确定是否将可穿戴贴剂应用于
败血症患者与机器学习结合后出院到长期急性护理医院
算法可能会减少意外的30天败血症再入院。这项研究和职业发展计划
为沃迪博士提供了一个令人印象深刻的基础,可以发展成为一个著名的临床科学家,以改善
通过开发和实施新的败血症患者检测和分类的方法来护理。博士
沃迪(Wardi)完全致力于通过采用创新策略来改善败血症患者的护理。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The etiology and outcomes of cardiopulmonary resuscitation in patients who are on V-V ECMO, a letter to the editor.
- DOI:10.1016/j.resplu.2023.100536
- 发表时间:2024-03
- 期刊:
- 影响因子:2.4
- 作者:Odish, Mazen;Roberts, Erin;Pollema, Travis;Pentony, Erica;Yi, Cassia;Owens, Robert L.;Wardi, Gabriel;Sell, Rebecca E.
- 通讯作者:Sell, Rebecca E.
Ketamine is not associated with more post-intubation hypotension than etomidate in patients undergoing endotracheal intubation.
- DOI:10.1016/j.ajem.2022.08.054
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel Wardi其他文献
Gabriel Wardi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriel Wardi', 18)}}的其他基金
Implementation of Continuum of Care Sepsis Phenotyping and Risk Stratification
脓毒症表型分析和风险分层连续护理的实施
- 批准号:
10429829 - 财政年份:2022
- 资助金额:
$ 18.03万 - 项目类别:
相似海外基金
Michigan Emergency Department Improvement Collaborative AltERnaTives to admission for Pulmonary Embolism (MEDIC ALERT PE) Study
密歇根急诊科改进合作入院肺栓塞 (MEDIC ALERT PE) 研究
- 批准号:
10584217 - 财政年份:2023
- 资助金额:
$ 18.03万 - 项目类别:
Adapting COVID-19 Prenatal Care Innovations for Patients At Risk of Adverse Pregnancy Outcomes: a Mixed Methods Study of the Plan for Appropriate Tailored Healthcare in Pregnancy
针对有不良妊娠结局风险的患者采用 COVID-19 产前护理创新:针对妊娠期适当定制医疗保健计划的混合方法研究
- 批准号:
10666730 - 财政年份:2023
- 资助金额:
$ 18.03万 - 项目类别:
Treating Respiratory Emergencies in Children (T-RECS) Feasibility Study
治疗儿童呼吸急症 (T-RECS) 可行性研究
- 批准号:
10370791 - 财政年份:2023
- 资助金额:
$ 18.03万 - 项目类别:
I-CARE: The Effectiveness of a Modular Digital Intervention to Reduce Suicidal Ideation and Emotional Distress during Pediatric Psychiatric Boarding
I-CARE:模块化数字干预对减少儿科精神科寄宿期间的自杀意念和情绪困扰的有效性
- 批准号:
10756733 - 财政年份:2023
- 资助金额:
$ 18.03万 - 项目类别:
Assessment of Implementation Methods in Sepsis and Respiratory Failure
脓毒症和呼吸衰竭实施方法的评估
- 批准号:
10416329 - 财政年份:2022
- 资助金额:
$ 18.03万 - 项目类别: