CDR Administrative Supplement for COVID-19 Impacted NIMH Research
针对受新冠肺炎 (COVID-19) 影响的 NIMH 研究的 CDR 行政补充
基本信息
- 批准号:10617502
- 负责人:
- 金额:$ 29.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-31 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT
Significance: As recent national controversy over Joint Commission mandates proves, universal suicide risk
screening in emergency departments (ED) will not achieve widespread adoption because confusion remains
around which specific risk indicators to assess, and clinicians fear that such screening will lead to massive
surges in psychiatric evaluations. To address these two implementation barriers, this study was funded to
derive a clinical decision rule to support universal risk detection and optimize patient care workflow in adults.
Investigators: The Project Team has extensive expertise in ED-based suicide risk screening and assessment
(Boudreaux, Larkin), clinical decision rule design (Boudreaux, Stiell), predictive analytics (Wang, Liu, Simon),
machine learning and informatics (Liu, Simon), industrial engineering (Johnson), and healthcare economics
(Clements). A Clinical Advisory Panel ensures that the proposal is grounded in the practical realities of the ED.
Innovation: The study will be the first to apply industry standards for deriving decision rules to suicide risk and
will directly inform the controversy regarding the relative strengths and weaknesses of universal versus
targeted screening. We will pioneer new statistical innovations for rule derivation and will integrate simulation
of potential workflow impact using industrial engineering modeling and economic analyses.
Approach: We have developed a pool of empirically supported clinician-acceptable candidate suicide risk
indicators. Data on these candidate indicators are being collected by trained research staff on adult medical
and psychiatric patients from a large ED. Participants are undergoing a comprehensive suicide risk
assessment by a research clinician, blinded to the indicators, who assigns the participant to a criterion
reference risk group: Negligible, Mild-Moderate, or High risk. Participants are being followed for 24 weeks after
the visit to assess suicidal behavior, our secondary outcome. In Aim 1, we will derive a universal screening
decision rule for “all comers,” as well as a variant to be used with patients presenting with a psychiatric chief
complaint (targeted). In Aim 2, we will test whether a previously validated risk stratification algorithm using
data from the electronic health record improves the performance of the decision rules. In Aim 3, we will model
the potential operational impact of the rules through dynamic modeling of clinical workflow and economic costs
and assessing clinician and patient acceptability in a new sample of 100 ED clinician-patient dyads.
Environment: UMass has demonstrated its capability to support this study through several key preliminary
studies, including the ED-SAFE studies, System of Safety, and other suicide-related studies set in the ED.
Impact: By providing clear, evidence-based recommendations on universal screening and optimized workflow
using standards accepted by emergency clinicians, this study will address two pivotal barriers to universal
suicide risk screening, transforming the “right thing” into the “easy thing” so it becomes the “usual thing.”
抽象的
意义:正如最近关于联合委员会的国家争议所证明的那样,普遍的自杀风险
在紧急部门(ED)中进行筛查将无法获得广泛的采用,因为混乱仍然存在
围绕哪些特定风险指标进行评估,临床医生担心这种筛查会导致大规模
精神病评估的激增。为了解决这两个实施障碍,这项研究得到了资助
得出一项临床决策规则,以支持普遍的风险检测并优化成人的患者护理工作流程。
调查人员:项目团队在基于ED的自杀风险筛查和评估方面拥有广泛的专业知识
(Boudreaux,Larkin),临床决策规则设计(Boudreaux,Stiell),预测分析(Wang,Liu,Simon),
机器学习和信息范围(LIU,SIMON),工业工程(Johnson)和医疗保健经济学
(Clements)。临床咨询小组可确保该提案以ED的实际现实为基础。
创新:该研究将是第一个将行业标准应用于自杀风险和
将直接告知有关普遍与普遍性相对优点和劣势的争议
有针对性的筛选。我们将开拓规则推导的新统计创新,并将集成模拟
使用工业工程建模和经济分析的潜在工作流程影响。
方法:我们已经开发了一系列经验支持的临床可接受的候选自杀风险
指标。这些候选指标的数据已由训练有素的成人医学研究人员收集
和来自大型ED的精神病患者。参与者正在承担全面的自杀风险
研究临床评估,对指标视而不见,后者将参与者指定为标准
参考风险组:可以忽略不计,轻度中度或高风险。参与者在24周之后进行
评估自杀行为的访问是我们的次要结果。在AIM 1中,我们将获得通用筛查
“所有来者”的决策规则,以及与精神科酋长的患者一起使用的变体
投诉(针对性)。在AIM 2中,我们将测试先前验证的风险分层算法
来自电子健康记录的数据改善了决策规则的绩效。在AIM 3中,我们将建模
通过临床工作流程和经济成本的动态建模,规则的潜在运营影响
并评估100个ED临床患者二元组的新样本中的临床和患者可接受性。
环境:UMass通过多个关键初步表明了其支持这项研究的能力
研究,包括ED中的ED-SAFE研究,安全体系和其他与自杀有关的研究。
影响:通过为通用筛查和优化工作流提供明确的,基于证据的建议
使用紧急临床医生接受的标准,这项研究将解决两个关键的环球障碍
自杀风险筛查,将“正确的事物”转变为“简单事物”,因此成为“通常的事物”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Edwin D Boudreaux的其他基金
The Center for Accelerating Practices to End Suicide through Technology Translation (CAPES)
通过技术转化加速结束自杀实践中心 (CAPES)
- 批准号:1057711710577117
- 财政年份:2023
- 资助金额:$ 29.49万$ 29.49万
- 项目类别:
Telehealth to Improve Prevention of Suicide (TIPS) in EDs
远程医疗可改善急诊科的自杀预防 (TIPS)
- 批准号:1032202810322028
- 财政年份:2021
- 资助金额:$ 29.49万$ 29.49万
- 项目类别:
Telehealth to Improve Prevention of Suicide (TIPS) in EDs
远程医疗可改善急诊科的自杀预防 (TIPS)
- 批准号:1053221010532210
- 财政年份:2021
- 资助金额:$ 29.49万$ 29.49万
- 项目类别:
Reward-based technology to improve opioid use disorder treatment initiation after an ED visit
基于奖励的技术可改善急诊就诊后阿片类药物使用障碍治疗的启动
- 批准号:1041413810414138
- 财政年份:2019
- 资助金额:$ 29.49万$ 29.49万
- 项目类别:
Computerized Adaptive Suicidal Risk Stratification and Prediction
计算机化自适应自杀风险分层和预测
- 批准号:1025438210254382
- 财政年份:2019
- 资助金额:$ 29.49万$ 29.49万
- 项目类别:
Reward-based technology to improve opioid use disorder treatment initiation after an ED visit
基于奖励的技术可改善急诊就诊后阿片类药物使用障碍治疗的启动
- 批准号:1033750110337501
- 财政年份:2019
- 资助金额:$ 29.49万$ 29.49万
- 项目类别:
Reward-based technology to improve opioid use disorder treatment initiation after an ED visit
基于奖励的技术可改善急诊就诊后阿片类药物使用障碍治疗的启动
- 批准号:1079487510794875
- 财政年份:2019
- 资助金额:$ 29.49万$ 29.49万
- 项目类别:
Deriving a Clinical Decision Rule for Suicide Risk in the Emergency Department Setting
得出急诊科自杀风险的临床决策规则
- 批准号:1029960610299606
- 财政年份:2019
- 资助金额:$ 29.49万$ 29.49万
- 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Using Re-inforcement Learning to Automatically Adapt a Remote Therapy Intervention (RTI) for Reducing Adolescent Violence Involvement
使用强化学习自动调整远程治疗干预 (RTI),以减少青少年暴力参与
- 批准号:1083433910834339
- 财政年份:2023
- 资助金额:$ 29.49万$ 29.49万
- 项目类别:
A novel robotic wastewater analysis system to quantify opioid exposure and treatment in residential communities
一种新型机器人废水分析系统,用于量化住宅社区中阿片类药物的暴露和处理
- 批准号:1054957910549579
- 财政年份:2022
- 资助金额:$ 29.49万$ 29.49万
- 项目类别:
Sentanyl II: A Multi-State Analysis of Fentanyl/Analogs, Naloxone, and Clinical Features of Non-Fatal Opioid Overdose
Sentanyl II:芬太尼/类似物、纳洛酮的多状态分析以及非致命阿片类药物过量的临床特征
- 批准号:1090433710904337
- 财政年份:2022
- 资助金额:$ 29.49万$ 29.49万
- 项目类别:
Healthcare-Seeking and Violence against American Indian and Alaska Native Women: Examining the Impact of the COVID-19 Pandemic
针对美洲印第安人和阿拉斯加原住民妇女的求医和暴力行为:审视 COVID-19 大流行的影响
- 批准号:1055904910559049
- 财政年份:2021
- 资助金额:$ 29.49万$ 29.49万
- 项目类别:
ED GOAL: An Advance Care Planning Intervention for Seriously Ill Older Adults in the Emergency Department
ED 目标:针对急诊科重病老年人的预先护理计划干预
- 批准号:1044406810444068
- 财政年份:2020
- 资助金额:$ 29.49万$ 29.49万
- 项目类别: