Developing Non-Ototoxic Aminoglycosides
开发非耳毒性氨基糖苷类药物
基本信息
- 批准号:8225109
- 负责人:
- 金额:$ 19.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-21 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAminoglycoside AntibioticsAminoglycosidesAnimal ModelAnimalsAntibioticsAuditoryBindingBiochemicalBiochemical PathwayBiological AssayCellsChemical StructureCochleaCochlear ductCollaborationsComplexDataDatabasesDevelopmentEffectivenessEndolymphFDA approvedGentamicinsGoalsHair CellsHandImageImaging TechniquesIncidenceIon ChannelKnowledgeLaboratoriesModificationMolecularMonitorNephrotoxicOpticsPathway interactionsPropertyResearchResearch PersonnelResistanceRibosomesSiteSite-Directed MutagenesisSolutionsSpecificityStereociliumStructureTestingTexas redTissuesTransducersTreatment ProtocolsVertebral columnaminoglycoside-induced ototoxicityantimicrobialbasebody systemcell typechemical propertycostdesigninsightknowledge basenephrotoxicitynovelototoxicitypreventprogramsresearch studyskillssuccesstherapy designtissue culturetreatment planningtwo-photonuptake
项目摘要
DESCRIPTION (provided by applicant): Aminoglycoside (AGs) antibiotics are used worldwide because of their potent antimicrobial activities and low cost. They are widely used despite the significant side effects of ototoxicity and nephrotoxicity. Recent evidence from independent laboratories demonstrated that AGs accumulate rapidly in hair cells because of their ability to enter these cells through the mechanoelectric transducer channel located near the tops of the stereocilia. Channel biophysical properties promote entry through the channel but limit exit through these same channels. Our data clearly show that ototoxicity can be prevented by blocking entry via these channels. The goal of this proposal is to develop novel non-ototoxic aminoglycosides. Our team has unique insights into the biophysical properties of the mechanically gated channels and can use this knowledge to design compounds that are sterically and/or electrically restricted from entering the channel and therefore the hair cell. Sites for modification are selected on the AG backbone so as not to interfere with antimicrobial activity. We have in hand the ability to investigate these compounds at the channel, cellular, end organ, system and whole animal level, using electrophysiological, optical, molecular and pharmacological means to monitor ototoxicity as well as antimicrobial activity. Complementary to the development of these compounds will be identifying the mechanism of entry of the AGs into the endolymph compartment. Upon identification of this pathway we will devise means to limit transport of existing AGs so that a co-treatment plan might prevent access of the AGs to the MET channel and thus limit entry into hair cells. The focus of this proposal is to design treatment regimes, either by creating novel AGs, or co-treatment plans, that will ameliorate ototoxicity due to AG administration. At the end of the proposed two-year research period, we will have applied our unique knowledge base and skill sets to gain insights into the effectiveness of either of these approaches in reducing ototoxicity caused AGs.
PUBLIC HEALTH RELEVANCE: Aminoglycosides (AGs) are the most widely used antibiotics worldwide, despite having a high incidence of ototoxicity. We have shown that auditory hair cells are sensitive to AGs because of their high rate of AG uptake, arising from the ability of AGs to pass through a novel mechanosensitive ion channel located at the tops of the stereocilia. Our plan is to design new antibiotics that are sterically and/or electrically restricted from passing through this channel. In conjunction with this approach we will identify the mechanism by which AGs enter the endolymph solution and devise a cotreatment plan to block the responsible transport mechanism, thus preventing the AGs from reaching the ion channel that they permeate.
描述(由申请人提供):由于其有效的抗菌活性和低成本,全世界使用了氨基糖苷(AGS)抗生素。尽管耳毒性和肾毒性具有显着的副作用,但它们被广泛使用。来自独立实验室的最新证据表明,AGS在毛细胞中迅速积累,因为它们能够通过位于立体尾核的顶部的机械电换能器通道进入这些细胞。通道生物物理特性促进通过通道进入,但通过这些相同的通道限制了出口。我们的数据清楚地表明,可以通过通过这些渠道阻止进入进入,可以防止耳毒性。该建议的目的是开发新型的非毒性氨基糖苷。我们的团队对机械门控通道的生物物理特性有独特的见解,可以利用这些知识来设计在空间和/或电限制进入通道的化合物,从而使毛细胞。选择用于修饰的位点在AG骨架上选择,以免干扰抗菌活性。我们可以使用电生理学,光学,分子和药理学手段来监测耳毒性以及抗菌活性,在通道,细胞,末端器官,系统和整个动物水平上研究这些化合物的能力。这些化合物的开发的补充将确定AG进入内淋巴舱的机制。在确定此途径后,我们将设计方法来限制现有AG的运输,以便共同处理计划可能会阻止AG进入MET通道,从而限制进入毛细胞的进入。该提案的重点是通过创建新颖的AG或共同处理计划来设计治疗方案,从而改善由于AG给药而减轻耳毒性。在拟议的为期两年的研究期结束时,我们将应用我们的独特知识库和技能集,以深入了解这两种方法在降低耳毒性导致AG中的有效性。
公共卫生相关性:尽管耳毒性发病率很高,但在全球范围内最广泛使用的抗生素。我们已经表明,听觉毛细胞对AG敏感,因为它们的Ag摄取率很高,这是由于AG经过位于立体胶体顶部的新型机械敏感离子通道的能力而产生的。我们的计划是设计新的抗生素,这些抗生素在空间和/或电气上限制通过该通道。结合这种方法,我们将确定AG进入内淋巴解决方案的机制,并设计制定负责任的运输机制的共同计划,从而阻止AGS到达其渗透的离子通道。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony J Ricci其他文献
Uncoordinated maturation of developing and regenerating postnatal mammalian vestibular hair cells
产后哺乳动物前庭毛细胞发育和再生的不协调成熟
- DOI:
10.1371/journal.pbio.3000326 - 发表时间:
2019-07 - 期刊:
- 影响因子:9.8
- 作者:
Tian Wang;Mamiko Niwa;Zahra N Sayyid;Davood K Hosseini;Nicole Pham;Sherri M Jones;Anthony J Ricci;Alan G Cheng - 通讯作者:
Alan G Cheng
Anthony J Ricci的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony J Ricci', 18)}}的其他基金
Abberior Infinity Line Upright 3D STED/Confocal Microscope
Abberior Infinity Line 正置 3D STED/共焦显微镜
- 批准号:
10632948 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Probing how hair bundle mechanical properties shape the mechanotransducer receptor current
探讨发束机械特性如何塑造机械传感器受体电流
- 批准号:
10778103 - 财政年份:2023
- 资助金额:
$ 19.99万 - 项目类别:
Identifying new sensors for in vivo cochlear imaging
识别用于体内耳蜗成像的新传感器
- 批准号:
10433182 - 财政年份:2022
- 资助金额:
$ 19.99万 - 项目类别:
Identifying new sensors for in vivo cochlear imaging
识别用于体内耳蜗成像的新传感器
- 批准号:
10617806 - 财政年份:2022
- 资助金额:
$ 19.99万 - 项目类别:
Functional Integrity of the Aging Auditory Synapse
衰老听觉突触的功能完整性
- 批准号:
9151173 - 财政年份:2016
- 资助金额:
$ 19.99万 - 项目类别:
相似国自然基金
基于细胞药代动力学的氨基糖苷类抗生素耳肾线粒体损伤及PGC-1α代谢调控的机制研究
- 批准号:82304612
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
甘油短时处理增强氨基糖苷类抗生素杀菌的分子机制
- 批准号:82372295
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
链霉菌氨基糖苷类抗生素生物合成的重要调控机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于碳纳米纤维和有序介孔碳复合材料表面活化电极的电化学适配体传感器同时检测牛奶中的多种氨基糖苷类抗生素
- 批准号:32111530291
- 批准年份:2021
- 资助金额:19 万元
- 项目类别:国际(地区)合作与交流项目
具有内源抗炎活性的聚乙二醇化氨基糖苷类抗生素在脓毒症治疗中的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular Mechanisms of Aminoglycoside Ototoxicity
氨基糖苷类耳毒性的分子机制
- 批准号:
10569609 - 财政年份:2022
- 资助金额:
$ 19.99万 - 项目类别:
Molecular Mechanisms of Aminoglycoside Ototoxicity
氨基糖苷类耳毒性的分子机制
- 批准号:
10443277 - 财政年份:2022
- 资助金额:
$ 19.99万 - 项目类别:
Repurposing momelotinib for the prevention of aminoglycoside-induced ototoxicity
重新利用莫洛替尼预防氨基糖苷类引起的耳毒性
- 批准号:
10554341 - 财政年份:2021
- 资助金额:
$ 19.99万 - 项目类别:
Repurposing momelotinib for the prevention of aminoglycoside-induced ototoxicity
重新利用莫洛替尼预防氨基糖苷类引起的耳毒性
- 批准号:
10341150 - 财政年份:2021
- 资助金额:
$ 19.99万 - 项目类别:
Strategies for Expedited Synthesis of Sulfated Aminoglycans
硫酸化氨基聚糖的快速合成策略
- 批准号:
10371884 - 财政年份:2020
- 资助金额:
$ 19.99万 - 项目类别: