Brillouin Microscope for Biomedical Research

用于生物医学研究的布里渊显微镜

基本信息

项目摘要

This proposal is motivated by the need to assess microscopic viscoelastic properties, which have emerged as a powerful biomarker for a number of diseases, such as cancer, atherosclerosis, sickle cell disease, etc., but also have been identified as a driving force for many biological processes, such as carcinogenesis, angiogenesis, morphogenesis, etc. The emergence of novel biomaterials for regenerative medicine also calls for a better understanding of biomechanical cellular-level interactions. In the past, assessment of elastic properties of tissues was mostly limited to large-scale imaging using ultrasound and magnetic resonant imaging and to nanoscopic contact assessment using either optical tweezers or atomic force microscopy instruments, which paved the way to our better understanding of viscoelastic properties of cells and tissues and their importance for biomedical research. In the same time, it is now realized that there is a substantial technology gap in instrumentation capable of assessing non-invasively viscoelastic properties on a microscopic scale with high enough spatial resolution, high sensitivity and high speed. Recently, optical coherence elastography was successfully developed to assess elastic properties of tissues on the scale of 15-100 𝜇𝑚. Ideally, such an instrument should be fully compatible with existing instrumentation using fluorescence and Raman microscopy systems to provide an additional capability to those. Brillouin microscopy is emerging as a powerful tool for non-invasive biomedical imaging. Developing it into a powerful instrument for biomedical research and, potentially, clinical applications is considered to be the overarching goal of this proposal. Two strategies will be pursued through this grant application. The first approach is relying on spontaneous Brillouin microscopy, which is simpler in use, and, with relatively minor modifications, can be implemented as an option in already existing commercial fluorescent or Raman microscopes for a large biomedical community. The second strategy is to utilize nonlinear Brillouin spectroscopy and microscopy to boost the efficiency of the signal and data acquisition rate by astonishing 5 orders of magnitude. This methodology utilizes ultrashort pulse excitation and is fully compatible with multiphoton fluorescence microscopy, second- and third-harmonic microscopies and coherent anti-Stokes Raman microscopy. An additional benefit of nonlinear Brillouin microscopy is improved sectioning capabilities. The overall strategy is to design, construct and characterize both microscopes in parallel, since each of those offers distinct advantages for a particular set of applications, and to demonstrate their imaging capabilities for biologically relevant systems to image cells growth and development in response to a local viscoelastic environment and image developing zebrafish embryo during the first 72 hours post fertilization.
该提议的动机是需要评估微观粘弹性特性,这些特性已成为 是许多疾病的强大生物标志物,例如癌症、动脉粥样硬化、镰状细胞病等,但是 也被认为是许多生物过程的驱动力,例如致癌、 血管生成、形态发生等。用于再生医学的新型生物材料的出现也呼唤着 为了更好地理解生物力学细胞水平的相互作用。 过去,组织弹性特性的评估主要局限于使用大规模成像 超声和磁共振成像以及使用光学的纳米级接触评估 镊子或原子力显微镜仪器,为我们更好地理解铺平了道路 细胞和组织的粘弹性特性及其对生物医学研究的重要性。 现在意识到,在能够进行非侵入性评估的仪器方面存在巨大的技术差距 微观尺度上的粘弹性特性,具有足够高的空间分辨率、高灵敏度和高 最近,成功开发了光学相干弹性成像技术来评估弹性体的弹性特性。 理想情况下,这样的仪器应该与现有的完全兼容。 使用荧光和拉曼显微镜系统的仪器提供了额外的功能 布里渊显微镜正在成为一种强大的非侵入性生物医学成像工具。 成为生物医学研究和潜在临床应用的强大工具被认为是 本提案的总体目标。 本次拨款申请将采取两种策略:第一种方法是依靠自发性。 布里渊显微镜使用起来更简单,并且经过相对较小的修改,可以实现为 大型生物医学界现有商用荧光或拉曼显微镜的一个选择。 第二个策略是利用非线性布里渊光谱和显微镜来提高效率 该方法采用超短技术,信号和数据采集速率提高了惊人的 5 个数量级。 脉冲激发,与多光子荧光显微镜、二次和三次谐波完全兼容 显微镜和相干反斯托克斯拉曼显微镜 非线性布里渊的另一个好处。 显微镜的总体策略是设计、构建和表征。 并行使用两种显微镜,因为每种显微镜都为一组特定的应用提供了独特的优势, 并展示他们的生物相关系统的成像能力,以对细胞生长和 响应局部粘弹性环境的发育和图像发育斑马鱼胚胎 受精后第一个 72 小时。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vladislav V. Yakovlev其他文献

Towards high-accuracy noninvasive ocular melanoma imaging and prognostics
迈向高精度非侵入性眼部黑色素瘤成像和预后
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vsevolod Cheburkanov;Vladislav V. Yakovlev
  • 通讯作者:
    Vladislav V. Yakovlev
How to drive CARS in reverse
如何倒车行驶汽车
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Hokr;Gary D. Noojin;Georgi I. Petrov;Hope T. Beier;Robert J. Thomas;Benjamin A. Rockwell;Vladislav V. Yakovlev
  • 通讯作者:
    Vladislav V. Yakovlev
Investigating chemotherapy effects on peripheral nerve elasticity
研究化疗对周围神经弹性的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vsevolod Cheburkanov;Junwei Du;Mikhail Y. Berezin;Vladislav V. Yakovlev
  • 通讯作者:
    Vladislav V. Yakovlev
Controlling quasi-parametric amplifications: From multiple PT-symmetry phase transitions to non-Hermitian sensing
控制准参数放大:从多个 PT 对称相变到非厄米传感
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoxiong Wu;Kai Bai;Penghong Yu;Zhaohui Dong;Yanyan He;Jingui Ma;Vladislav V. Yakovlev;Meng Xiao;Xianfeng Chen;Luqi Yuan
  • 通讯作者:
    Luqi Yuan
New insights into a hydrogen bond: hyper-Raman spectroscopy of DMSO-water solution
  • DOI:
    10.1039/d1cp02387j
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Christopher B. Marble;Xingqi Xu;Georgi I. Petrov;Dawei Wang;Vladislav V. Yakovlev
  • 通讯作者:
    Vladislav V. Yakovlev

Vladislav V. Yakovlev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vladislav V. Yakovlev', 18)}}的其他基金

Sensing local nano-environment with coherent Raman microspectroscopy
使用相干拉曼显微光谱检测局部纳米环境
  • 批准号:
    10218816
  • 财政年份:
    2021
  • 资助金额:
    $ 28.9万
  • 项目类别:
Sensing local nano-environment with coherent Raman microspectroscopy
使用相干拉曼显微光谱检测局部纳米环境
  • 批准号:
    10477258
  • 财政年份:
    2021
  • 资助金额:
    $ 28.9万
  • 项目类别:
Brillouin Microscope for Biomedical Research
用于生物医学研究的布里渊显微镜
  • 批准号:
    10239059
  • 财政年份:
    2018
  • 资助金额:
    $ 28.9万
  • 项目类别:
High-throughput vibrational cytometry
高通量振动细胞术
  • 批准号:
    7876089
  • 财政年份:
    2010
  • 资助金额:
    $ 28.9万
  • 项目类别:
High-throughput vibrational cytometry
高通量振动细胞术
  • 批准号:
    8467914
  • 财政年份:
    2010
  • 资助金额:
    $ 28.9万
  • 项目类别:
Time-gated confocal Raman microscope
时间选通共焦拉曼显微镜
  • 批准号:
    7454090
  • 财政年份:
    2008
  • 资助金额:
    $ 28.9万
  • 项目类别:
Time-gated confocal Raman microscope
时间选通共焦拉曼显微镜
  • 批准号:
    7587294
  • 财政年份:
    2008
  • 资助金额:
    $ 28.9万
  • 项目类别:
REAL-TIME MICROSCOPIC IMAGING OF FAST MEMBRANE POTENTIA
快速膜电位的实时显微成像
  • 批准号:
    6530140
  • 财政年份:
    2001
  • 资助金额:
    $ 28.9万
  • 项目类别:
REAL-TIME MICROSCOPIC IMAGING OF MEMBRANE POTENTIAL
膜电位的实时显微成像
  • 批准号:
    6364640
  • 财政年份:
    2001
  • 资助金额:
    $ 28.9万
  • 项目类别:
SHORT PULSE LASER TISSUE ABLATION
短脉冲激光组织消融
  • 批准号:
    6360100
  • 财政年份:
    2000
  • 资助金额:
    $ 28.9万
  • 项目类别:

相似国自然基金

Kallistatin抑制管周脂肪细胞线粒体裂变拮抗动脉粥样硬化的作用及机制研究
  • 批准号:
    82370443
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
蛋白激酶D(PKD)抑制剂CRT0066101通过囊泡转运蛋白/TGN/NLRP3途径抗动脉粥样硬化炎症的作用及机制
  • 批准号:
    82304489
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NPTX1促进血管内皮细胞衰老在动脉粥样硬化中的作用机制及临床价值研究
  • 批准号:
    82372302
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SAH水解酶缺乏通过表观遗传调控KLF4促进动脉粥样硬化易损斑块形成的作用机制研究
  • 批准号:
    82373553
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
二肽基肽酶在免疫-菌群失衡促动脉粥样硬化中的作用及机制研究
  • 批准号:
    82370465
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
  • 批准号:
    10586599
  • 财政年份:
    2023
  • 资助金额:
    $ 28.9万
  • 项目类别:
Translational studies of cellular senescence as a regulator of doxorubicin-mediated arterial dysfunction
细胞衰老作为阿霉素介导的动脉功能障碍调节剂的转化研究
  • 批准号:
    10450529
  • 财政年份:
    2022
  • 资助金额:
    $ 28.9万
  • 项目类别:
Translational studies of cellular senescence as a regulator of doxorubicin-mediated arterial dysfunction
细胞衰老作为阿霉素介导的动脉功能障碍调节剂的转化研究
  • 批准号:
    10616523
  • 财政年份:
    2022
  • 资助金额:
    $ 28.9万
  • 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
  • 批准号:
    10683796
  • 财政年份:
    2022
  • 资助金额:
    $ 28.9万
  • 项目类别:
Role of Plasminogen Activator Inhibitor-1 in Vascular Smooth Muscle Cell Stiffening and Senescence
纤溶酶原激活剂抑制剂 1 在血管平滑肌细胞硬化和衰老中的作用
  • 批准号:
    10259921
  • 财政年份:
    2021
  • 资助金额:
    $ 28.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了