Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
基本信息
- 批准号:10683796
- 负责人:
- 金额:$ 63.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-09 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAmino AcidsAnimal ModelAortaApoptosis InhibitorArterial InjuryArteriesAtherosclerosisAtomic Force MicroscopyAttenuatedBiochemicalBiocompatible MaterialsBiologicalBiological ModelsBiologyBiomechanicsBiomimeticsBiophysical ProcessBlood VesselsCardiovascular DiseasesCardiovascular systemCell physiologyCellsCellular biologyChromatinCollagenCoronary ArteriosclerosisCoronary heart diseaseCoupledDNA Sequence AlterationDataDevelopmentDiseaseDisease ProgressionEngineeringEnvironmentEventExtracellular MatrixExtracellular Matrix ProteinsFamily suidaeFeedbackFibronectinsFluorescent in Situ HybridizationGene ExpressionGenetic TranscriptionGoalsHistologicHumanHyperplasiaIn VitroInjuryKnock-outLabelMachine LearningMechanicsMediatingMedicineMicroscopyModelingMolecularMonitorMorphologyMusNuclear StructureOpticsPathologicPathologyPharmacotherapyPhenotypePhysical condensationPhysiologicalProductionPropertyProteinsRNAResearchResearch PersonnelResearch ProposalsResolutionRoleSmooth Muscle MyocytesStructureSystemTestingTherapeuticTime StudyTissue EngineeringTissuesUp-RegulationVascular ProliferationVascular Smooth MuscleVascular SystemWorkarterial remodelingarterial stiffnessbasecardiovascular risk factorcell behaviorcell motilityfemoral arteryin vivoin vivo Modelinjuredknock-downmRNA Expressionmachine learning algorithmmembermicroscopic imagingmigrationmouse modelnanofibernanoscaleneointima formationnew therapeutic targetnoveloverexpressionpolyacrylamide hydrogelsprotein expressionreconstructionresponsescaffoldsingle cell analysissoft tissuesurvivintargeted treatmenttherapeutic targetthree dimensional cell culturetranscriptome sequencingvascular abnormalityvascular injuryvascular smooth muscle cell migrationvascular smooth muscle cell proliferation
项目摘要
SUMMARY
Arterial stiffness is a key risk factor for cardiovascular disease (CVD) events. Change in arterial stiffness
is a significant pathology in vascular injury, atherosclerosis, and coronary disease by which stiffening of
the vessel wall promotes anomalous migration and proliferation of vascular smooth muscle cells
(VSMCs) causing neointima formation of the vessel wall. Yet, the molecular mechanisms by which
pathological ECM stiffness regulates VSMC proliferation and migration associated with pathological ne-
ointima formation are unclear. This research proposal will address this gap by exploring how changes
in arterial stiffness elicit VSMC behaviors that contribute to CVD. More specifically, this work draws upon
newly collected preliminary data that show a novel role for the protein survivin as a key regulator of
stiffness-mediated VSMC proliferation and migration and an effector of arterial stiffening and remodel-
ing. Using mouse and human VSMCs, this study will first explore how vascular ECM stiffness impacts
VSMC migration, proliferation, and chromatin organization at the single-cell level (early stage of disease
progression; Aim 1); and, secondly, determine how pathological ECM stiffness drives neointima for-
mation altering the local mechanical environment of VSMCs in vitro (advanced stage of disease pro-
gression; Aim 2). Lastly, this research proposal will test survivin’s role in regulating both ECM production
and arterial stiffness (in vivo animal model; Aim 2). These aims will be achieved using a 3D cell culture
using a novel in vitro porcine decellularized aorta ECM based (daECM) fibrous scaffold system and
engineered mouse injury models. Briefly, VSMCs isolated from mouse and human aortas will be cultured
on daECM-based nanofibrous scaffolds of different stiffnesses that mimic normal and pathological con-
ditions in the body. The VSMC responses to pathological ECM stiffness will be analyzed using advanced
microscopy to observe changes in cellular/nuclear structure, biomechanical properties, and the RNA
and protein expressions at the single-cell level in vitro. Finally, engineered mice will be used to study
stiffness and VSMC function in intact arteries, performing a histological examination and biochemical
analyses of dissected tissue after stiffness is manipulated by arterial injury, drug treatment, or genetic
mutations. This project will, for the first time, study the molecular and biophysical mechanisms by which
survivin 1) mediates stiffness-sensitive VSMC functions, and 2) contributes to neointima formation and
stiffening, revealing a completely new aspect of survivin biology in VSMCs and in the pathology of arte-
rial stiffness. Overall, this proposal is unique in its ability to identify potential new therapeutic targets for
the treatment of CVDs.
概括
动脉僵硬度是心血管疾病 (CVD) 事件的关键危险因素。
是血管损伤、动脉粥样硬化和冠状动脉疾病的重要病理学,通过它使血管硬化
血管壁促进血管平滑肌细胞的异常迁移和增殖
(VSMC)引起血管壁新内膜形成的分子机制。
病理性 ECM 硬度调节与病理性神经相关的 VSMC 增殖和迁移
内膜的形成尚不清楚,本研究提案将通过探索如何变化来解决这一差距。
更具体地说,这项工作借鉴了动脉硬化引起的 VSMC 行为,从而导致 CVD。
新收集的初步数据显示蛋白质生存素作为关键调节因子的新作用
硬度介导的 VSMC 增殖和迁移以及动脉硬化和重塑的效应器 -
这项研究将首先利用小鼠和人类 VSMC 探讨血管 ECM 硬度如何影响
单细胞水平上的 VSMC 迁移、增殖和染色质组织(疾病早期)
目标 1);其次,确定病理性 ECM 僵硬如何驱动新内膜-
体外改变 VSMC 的局部机械环境(疾病的晚期阶段)
回归;最后,本研究计划将测试 Survivin 在调节 ECM 产生中的作用。
和动脉僵硬度(体内动物模型;目标 2)将通过 3D 细胞培养来实现。
使用新型体外猪脱细胞主动脉 ECM (daECM) 纤维支架系统
简而言之,将从小鼠和人类主动脉分离的 VSMC 进行培养。
基于 daECM 的具有不同硬度的纳米纤维支架,模拟正常和病理状态
将使用先进的技术来分析 VSMC 对病理性 ECM 僵硬的反应。
显微镜观察细胞/核结构、生物力学特性和 RNA 的变化
最后,将使用工程小鼠进行研究。
完整动脉的硬度和 VSMC 功能,进行组织学检查和生化检查
通过动脉损伤、药物治疗或遗传控制硬度后对解剖组织进行分析
该项目将首次研究突变的分子和生物物理机制。
survivin 1) 介导硬度敏感的 VSMC 功能,2) 有助于新内膜形成和
变硬,揭示了 VSMC 和动脉病理学中存活蛋白生物学的全新方面
总体而言,该提案的独特之处在于它能够确定潜在的新治疗靶点。
CVD 的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongho Bae其他文献
Yongho Bae的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongho Bae', 18)}}的其他基金
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 63.95万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 63.95万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 63.95万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 63.95万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 63.95万 - 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 63.95万 - 项目类别: