Time-gated confocal Raman microscope
时间选通共焦拉曼显微镜
基本信息
- 批准号:7454090
- 负责人:
- 金额:$ 7.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-01 至 2010-04-30
- 项目状态:已结题
- 来源:
- 关键词:BiologicalBiological ModelsBiological SciencesBlindnessCellsChemicalsCollagenCollagen Type ICollectionComplexConfocal MicroscopyDentalDental cariesDetectionDevelopmentDiagnosticDiagnostics ResearchDiscriminationEvaluationFluorescenceGoalsImageImaging TechniquesInvasiveLateralLifeMasksMeasuresMedical ResearchMicroscopeMicroscopicMicroscopyModalityMolecularMolecular StructureNoiseOpticsOrganismPerformancePurposeRaman Spectrum AnalysisRateResearchResearch ProposalsResolutionSignal TransductionSolutionsStructureStructure of retinal pigment epitheliumSystemTechniquesTestingTimeTissuesboneclinical applicationconceptdesignfundamental researchimprovedin vivoinnovationinstrumentmolecular imagingnoveloptical imagingpreventprototypeself organizationtooltransmission process
项目摘要
DESCRIPTION (provided by applicant): Progress in the Life Sciences depends upon the development of new tools and instruments. Our ability to understand the function of living systems on a cellular and molecular level is greatly enhanced by imaging techniques capable of providing structural and chemical information in vivo. Raman spectroscopy is truly non-invasive, and it could provide significant information on the chemical composition and physical structure of biological tissues. This small-scale (R03) research proposal aims to develop an innovative approach for non-invasive microspectroscopy in order to unambiguously explore changes in chemical composition in cells and tissues. To achieve this goal, the PI will utilize the concept of time-gated Raman imaging, applied for the first time to microscopy to achieve confocal imaging with superior discrimination against the fluorescence background. It is expected that it will provide at least an order of magnitude improvement in the signal-to-noise ratio, which transforms into at least 100 times faster acquisition rates, while improving spatial resolution and eradicating possible ambiguities in resolving complex Raman bands. The first specific aim is building the prototype of a novel instrument and characterizing its performance. The second specific aim is pilot testing of a new instrument for molecular, cellular and tissue imaging for several model systems: 1) collagen self-organization and structural transformation, which leads to bone structure development, 2) photodegradation of retinal pigment epithelium cells, which is considered to be the major cause of blindness, and 3) early caries detection in dental tissues. Many medical research and diagnostic applications require microscopic molecular imaging with minimum invasiveness. Raman microspectroscopy, being a non-invasive, chemically specific technique for molecular imaging, suffers a dramatic drawback due to a strong fluorescent background, which significantly reduces the signal-to-noise ratio and makes it difficult to reveal the fine structure of vibrational bands. The proposed research provides a solution to this problem for microscopic imaging by time-gating the useful signal in a specially designed optical arrangement.
描述(由申请人提供):生命科学的进展取决于新工具和工具的开发。通过能够提供体内结构和化学信息的成像技术,大大增强了我们在细胞和分子水平上理解生命系统功能的能力。拉曼光谱确实是无创的,它可以提供有关生物组织的化学组成和物理结构的重要信息。这项小规模(R03)的研究建议旨在开发一种非侵入性微光谱镜检查的创新方法,以明确探索细胞和组织中化学成分的变化。为了实现这一目标,PI将使用时间门控拉曼成像的概念,该概念首次适用于显微镜,以实现对荧光背景的优越歧视的共聚焦成像。预计它将至少提供信噪比的数量级提高,从而将其转变为至少100倍的采集率,同时改善空间分辨率并消除解决复杂的拉曼频段中可能的歧义。第一个具体目的是构建新型仪器的原型并表征其性能。第二个具体目的是对几种模型系统的分子,细胞和组织成像的新仪器进行试验测试:1)胶原蛋白自组织和结构转化,这导致骨结构的发展,2)视网膜色素上皮细胞的光降解被认为是失明的主要原因,3)牙科组织中的早期龋齿检测。许多医学研究和诊断应用都需要微观成像,并具有最小的侵入性。拉曼显微光谱是一种非侵入性、化学特异性的分子成像技术,由于强烈的荧光背景而存在显着的缺点,这会显着降低信噪比,并使其难以揭示振动带的精细结构。拟议的研究通过在特殊设计的光学布置中对有用的信号进行时间门控为微观成像提供了解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladislav V. Yakovlev其他文献
Towards high-accuracy noninvasive ocular melanoma imaging and prognostics
迈向高精度非侵入性眼部黑色素瘤成像和预后
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Vsevolod Cheburkanov;Vladislav V. Yakovlev - 通讯作者:
Vladislav V. Yakovlev
How to drive CARS in reverse
如何倒车行驶汽车
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
B. Hokr;Gary D. Noojin;Georgi I. Petrov;Hope T. Beier;Robert J. Thomas;Benjamin A. Rockwell;Vladislav V. Yakovlev - 通讯作者:
Vladislav V. Yakovlev
Investigating chemotherapy effects on peripheral nerve elasticity
研究化疗对周围神经弹性的影响
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Vsevolod Cheburkanov;Junwei Du;Mikhail Y. Berezin;Vladislav V. Yakovlev - 通讯作者:
Vladislav V. Yakovlev
Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy.
脉冲形状对多光子过程效率的影响:对生物显微镜的影响。
- DOI:
10.1117/1.429937 - 发表时间:
1999-07-01 - 期刊:
- 影响因子:3.5
- 作者:
Christopher J. Bardeen;Vladislav V. Yakovlev;Jeff Squier;K. R. Wilson;S. D. Carpenter;Peter M. Weber - 通讯作者:
Peter M. Weber
Flow cytometry using Brillouin imaging and sensingviatime-resolved optical (BISTRO) measurements
- DOI:
10.1039/c5an01700a - 发表时间:
2015-08 - 期刊:
- 影响因子:4.2
- 作者:
Zhaokai Meng;Georgi I. Petrov;Vladislav V. Yakovlev - 通讯作者:
Vladislav V. Yakovlev
Vladislav V. Yakovlev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladislav V. Yakovlev', 18)}}的其他基金
Sensing local nano-environment with coherent Raman microspectroscopy
使用相干拉曼显微光谱检测局部纳米环境
- 批准号:
10218816 - 财政年份:2021
- 资助金额:
$ 7.14万 - 项目类别:
Sensing local nano-environment with coherent Raman microspectroscopy
使用相干拉曼显微光谱检测局部纳米环境
- 批准号:
10477258 - 财政年份:2021
- 资助金额:
$ 7.14万 - 项目类别:
REAL-TIME MICROSCOPIC IMAGING OF FAST MEMBRANE POTENTIA
快速膜电位的实时显微成像
- 批准号:
6530140 - 财政年份:2001
- 资助金额:
$ 7.14万 - 项目类别:
REAL-TIME MICROSCOPIC IMAGING OF MEMBRANE POTENTIAL
膜电位的实时显微成像
- 批准号:
6364640 - 财政年份:2001
- 资助金额:
$ 7.14万 - 项目类别:
相似国自然基金
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于微生物群落代谢网络模型构建解析客家黄酒发酵中扣囊复膜酵母与乳酸菌的交互作用机制
- 批准号:32302029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林动态植被与土壤微生物耦合模型构建与应用
- 批准号:42371032
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
基于生物三维打印的阿尔兹海默症炎性血脑屏障模型构建及β-淀粉样蛋白病变机制研究
- 批准号:52375295
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
具趋向性和非局部作用生物扩散模型的时空动力学研究
- 批准号:12301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Time series clustering to identify and translate time-varying multipollutant exposures for health studies
时间序列聚类可识别和转化随时间变化的多污染物暴露以进行健康研究
- 批准号:
10749341 - 财政年份:2024
- 资助金额:
$ 7.14万 - 项目类别:
Using epigenetic science to improve environmental health literacy
利用表观遗传学提高环境健康素养
- 批准号:
10524680 - 财政年份:2023
- 资助金额:
$ 7.14万 - 项目类别:
Improving Prognostication for Traumatic Brain Injury
改善创伤性脑损伤的预后
- 批准号:
10643695 - 财政年份:2023
- 资助金额:
$ 7.14万 - 项目类别:
An Integrated Catheter Dressing for Early Detection of Catheter-related Bloodstream Infections
用于早期检测导管相关血流感染的集成导管敷料
- 批准号:
10647072 - 财政年份:2023
- 资助金额:
$ 7.14万 - 项目类别:
BEASTS-Novel Biomimetic Liver Platform for Enabling ALD Researchers
BEASTS-为 ALD 研究人员提供支持的新型仿生肝脏平台
- 批准号:
10697452 - 财政年份:2023
- 资助金额:
$ 7.14万 - 项目类别: