Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
基本信息
- 批准号:10713637
- 负责人:
- 金额:$ 28.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-13 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAlzheimer disease detectionAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAlzheimer’s disease biomarkerAmericanAmyloid beta-42AreaArtificial IntelligenceAtrophicAutopsyAwardBiopsyBrainBrain InjuriesCharacteristicsClassificationClinicalCognitiveComputing MethodologiesDataData SetDementiaDevelopmentDiagnosisDiseaseEarly DiagnosisEarly identificationEarly treatmentEducational CurriculumFutureGrantImageImpaired cognitionIntelligenceKnowledgeLearningMRI ScansMachine LearningMagnetic Resonance ImagingMammographic screeningMeasurementMedicalModalityModelingNerve DegenerationOutcomeParentsPositron-Emission TomographyProcessResearchResearch MethodologyResearch PersonnelResourcesSamplingScanningSpinal PunctureSpinal TapTechniquesTimeTrainingTranslatingTriageUnited States National Institutes of HealthUpdateWorkbiomarker developmentbrain magnetic resonance imagingbreast imagingcancer imagingcognitive functiondeep learningdeep learning modeldesignearly detection biomarkersempowermentexperienceimaging biomarkerimaging modalityimprovedinnovationlearning strategymalignant breast neoplasmmild cognitive impairmentmultidisciplinaryneuroimagingneuroimaging markerneuron lossnon-invasive imagingoutcome predictionpredictive modelingpreventprogramspublic health relevanceradiomicsresearch studyrisk predictionscreeningtargeted treatmenttau Proteins
项目摘要
Adapt innovative deep learning methods from breast cancer to Alzheimer’s disease
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, with the number of affected Americans
expected to reach 13.4 million by the year 2050. Early detection and treatment of AD is critical to prevent non-
reversible and fatal brain damage. Thus, development of non-invasive markers from neuroimaging modalities
(e.g., brain MRI) is of great significance for screening and early detection of AD. In the PI’s active R01 award
(1R01EB032896-01), the research focuses on developing a new line of research strategy and technical
innovation to analyze breast cancer images for diagnosis, risk prediction, and triage. The core strategy is to
incorporate medical/clinical intelligence into data-driven deep learning modeling. This technical innovation is
however not limited to breast cancer, but can be adapted to other diseases, such as AD, as well. Thus, in this
Supplement proposal, we propose to develop an AD focus of our active R01 by adapting the new technical
innovation in breast cancer into cognitive outcome prediction for discovering early and no-invasive imaging
biomarkers for AD. The main task of this Supplement study is to build deep learning models using brain MRIs
as input for cognitive outcome prediction, which is formulated as a typical classification problem among three
cognitive classes: Normal Control vs. Mild Cognitive Impairment vs. AD. We proposed two specific aims: 1)
Deep curriculum learning informed by samples’ characteristic knowledge for cognitive outcome prediction and
2) Learning knowledge from longitudinal brain MRIs to improve prediction of AD. We will mainly use the
publicly available Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. We have assembled a multi-
disciplinary team with complementary expertise. The proposed study will provide an avenue to translate some
of the innovative techniques developed in other domains to advance non-invasive imaging biomarker
development for AD. This project will also provide an opportunity for the PI’s team to get involved and
contribute to AD-related new research.
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
抽象的
阿尔茨海默病 (AD) 是最常见的痴呆症,受影响的美国人数量
预计到 2050 年,这一数字将达到 1340 万。早期发现和治疗 AD 对于预防非 AD 至关重要
因此,通过神经影像学方法开发非侵入性标记物。
(如脑部MRI)对于AD的筛查和早期发现具有重要意义。在PI的主动R01奖中。
(1R01EB032896-01),该研究的重点是开发新的研究策略和技术路线
分析乳腺癌图像以进行诊断、风险预测和分诊的创新核心策略是。
将医学/临床智能融入数据驱动的深度学习建模中。
然而,不限于乳腺癌,还可以适应其他疾病,例如AD。
补充提案,我们建议通过采用新技术来开发我们主动R01的AD焦点
乳腺癌认知结果预测的创新,以发现早期和无创成像
该补充研究的主要任务是使用大脑 MRI 建立深度学习模型。
作为认知结果预测的输入,它被表述为三个之间的典型分类问题
认知类别:正常控制、轻度认知障碍、AD 我们提出了两个具体目标:1)
深度学习课程根据样本的特征知识进行认知结果预测和
2)从纵向脑部 MRI 中学习知识来改进 AD 的预测。
我们已经收集了公开的阿尔茨海默病神经影像倡议 (ADNI) 数据集。
拟议的研究将提供一个途径来翻译一些专业知识。
在其他领域开发的创新技术,以推进非侵入性成像生物标志物
该项目还将为 PI 团队提供参与和开发的机会。
为 AD 相关的新研究做出贡献。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interpretable machine learning model for imaging-based outcome prediction after cardiac arrest.
用于心脏骤停后基于成像的结果预测的可解释机器学习模型。
- DOI:10.1016/j.resuscitation.2023.109894
- 发表时间:2023-07-01
- 期刊:
- 影响因子:6.5
- 作者:Chang Liu;J. Elmer;Dooman Arefan;M. Pease;Sh;ong Wu;ong
- 通讯作者:ong
A self-training teacher-student model with an automatic label grader for abdominal skeletal muscle segmentation.
带有自动标签分级器的自训练师生模型,用于腹部骨骼肌分割。
- DOI:
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Hao, Degan;Ahsan, Maaz;Salim, Tariq;Duarte;Esmaeel, Dadashzadeh;Zhang, Yudong;Arefan, Dooman;Wu, Shandong
- 通讯作者:Wu, Shandong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shandong Wu其他文献
Shandong Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shandong Wu', 18)}}的其他基金
SCH: Leverage clinical knowledge to augment deep learning analysis of breast images
SCH:利用临床知识增强乳腺图像的深度学习分析
- 批准号:
10435785 - 财政年份:2021
- 资助金额:
$ 28.38万 - 项目类别:
SCH: Leverage clinical knowledge to augment deep learning analysis of breast images
SCH:利用临床知识增强乳腺图像的深度学习分析
- 批准号:
10659235 - 财政年份:2021
- 资助金额:
$ 28.38万 - 项目类别:
Deep interpretation of mammographic images in breast cancer screening
乳腺癌筛查中乳腺X线摄影图像的深入解读
- 批准号:
10165659 - 财政年份:2018
- 资助金额:
$ 28.38万 - 项目类别:
Quantitative assessment of breast MRIs for breast cancer risk prediction
乳腺 MRI 定量评估用于乳腺癌风险预测
- 批准号:
9274819 - 财政年份:2015
- 资助金额:
$ 28.38万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Deprescribing antipsychotics in patients with Alzheimers disease and related dementias and behavioral disturbance in skilled nursing facilities
在熟练护理机构中取消阿尔茨海默病及相关痴呆症和行为障碍患者的抗精神病药物处方
- 批准号:
10634934 - 财政年份:2023
- 资助金额:
$ 28.38万 - 项目类别:
Identifying microscopic vasculature within entorhinal cortex in healthy aging and its proximity to pathology profiles in Alzheimer's disease
识别健康衰老过程中内嗅皮层内的微观脉管系统及其与阿尔茨海默氏病病理特征的接近程度
- 批准号:
10657895 - 财政年份:2023
- 资助金额:
$ 28.38万 - 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
- 批准号:
10765991 - 财政年份:2023
- 资助金额:
$ 28.38万 - 项目类别:
Investigation and deployment of novel Bayesian inference algorithms in CAVATICA for identifying genomic variants underlying congenital heart defects in Down syndrome individuals
在 CAVATICA 中研究和部署新型贝叶斯推理算法,用于识别唐氏综合症个体先天性心脏缺陷的基因组变异
- 批准号:
10658217 - 财政年份:2023
- 资助金额:
$ 28.38万 - 项目类别:
The perivascular space: A structural link between inadequate sleep, glymphatic dysfunction, and neurocognitive outcomes in adolescents
血管周围空间:青少年睡眠不足、类淋巴功能障碍和神经认知结果之间的结构联系
- 批准号:
10578466 - 财政年份:2023
- 资助金额:
$ 28.38万 - 项目类别: