SCH: Leverage clinical knowledge to augment deep learning analysis of breast images
SCH:利用临床知识增强乳腺图像的深度学习分析
基本信息
- 批准号:10659235
- 负责人:
- 金额:$ 28.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsArtificial IntelligenceBenignBilateralBiologicalBreastBreast Cancer DetectionBreast Cancer Risk Assessment ToolBreast Cancer Risk FactorClassificationClinicalClinical SciencesComputational TechniqueComputer AssistedConsumptionDataData SetDetectionDevelopmentDevicesDiagnosisDiseaseEarly DiagnosisEngineeringGenerationsGoalsGrainHybridsImageImage AnalysisInterventionKnowledgeLabelLearningLesionLiteratureMalignant NeoplasmsMammographic DensityMammographyMapsMedicalMedical ImagingMethodologyMethodsModelingOrganPatientsPatternPeriodicalsPredispositionPrincipal InvestigatorResearchResearch PersonnelRiskRisk AssessmentRisk FactorsRisk MarkerRisk ReductionSchemeSource CodeStatistical ModelsStructureTechnologyTextureTimeTrainingTriageWomanWorkbiomedical imagingbreast cancer diagnosisbreast imagingbreast lesionclinical applicationclinical imagingcomputer aided detectiondeep learningdeep learning modeldesigndigitalexperiencegenerative adversarial networkimaging modalityimprovedinnovationinsightlarge datasetsmalignant breast neoplasmmultidisciplinarynovelnovel strategiesprogramsrisk predictionscreeningserial imagingspatiotemporalsuccesstooltransfer learningtrustworthiness
项目摘要
Artificial intelligence (AI) technologies have achieved remarkable success in medical image-based
applications. Today, there are unprecedented needs in developing novel strategies and methodologies to
enable robust, trustworthy, and accessible AI for various applications. Classic deep learning training is
driven purely by data. In the medical domain, clinical knowledge is often available and useful, but is mostly
ignored in the current practice of AI research. Incorporating clinical knowledge into deep learning modeling
requires an in-depth understanding of medical context/workflow. This calls for multi-disciplinary
collaborative research using computational techniques and clinical sciences to advance the biomedical
data/AI research. The overall goal of this project is to develop a new paradigm of deep learning that
combines imaging data and clinical knowledge to augment breast cancer diagnosis, risk assessment, and
lesion detection. We will develop technical innovations on breast imaging to address deep learning
modeling on small datasets, longitudinal examinations, and content-efficient images, through three specific
aims: Aim 1: Formulate auxiliary tasks/assessment into model training of CNNs for breast cancer diagnosis
on small datasets; Aim 2: Employ biological relationships of images to guide deep learning structure design
for breast cancer risk prediction using longitudinal data; Aim 3: Develop a knowledge-guided unsupervised
pipeline for identification of a suspicion map to support deep learning analysis on content-efficient images.
These aims represent novel applied methodological development to build roust deep learning models for
important clinical imaging applications. We have strong preliminary results for each aim and an
experienced research team covering computational, biomedical, engineering, and clinical sciences. Our
proposed study has a broader impact on developing robust and innovative AI strategies/methods to enable
clinical imaging AI applications. Going beyond breast imaging, our proposed concepts, paradigms, and
methods can also be adapted/applicable to other diseases and imaging modalities, leading to benefits for a
wide range of biomedical imaging analyses. Any algorithms, knowledge, insights, and experience gained
from this study will have a direct and substantial impact on the rapid evolvement and applications of
medical imaging AI devices, ultimately benefiting the researchers, clinicians, and patients.
人工智能(AI)技术在基于医学图像的领域取得了显着的成功
应用程序。今天,前所未有地需要开发新的战略和方法来
为各种应用程序提供强大、值得信赖且可访问的人工智能。经典的深度学习训练是
纯粹由数据驱动。在医学领域,临床知识通常是可用且有用的,但大多是
在目前的人工智能研究实践中被忽视。将临床知识融入深度学习建模中
需要深入了解医疗背景/工作流程。这需要多学科
使用计算技术和临床科学的合作研究来推进生物医学
数据/人工智能研究。该项目的总体目标是开发一种新的深度学习范式
结合影像数据和临床知识来增强乳腺癌诊断、风险评估和
病变检测。我们将开发乳腺成像技术创新来解决深度学习问题
通过三个特定的方法对小数据集、纵向检查和内容高效的图像进行建模
目标:目标 1:将辅助任务/评估纳入用于乳腺癌诊断的 CNN 模型训练中
在小数据集上;目标2:利用图像的生物学关系来指导深度学习结构设计
使用纵向数据进行乳腺癌风险预测;目标 3:开发知识引导的无监督
用于识别怀疑图以支持对内容高效图像进行深度学习分析的管道。
这些目标代表了新的应用方法论的发展,旨在为以下领域建立鲁棒的深度学习模型:
重要的临床成像应用。我们对每个目标都有强有力的初步结果,并且
经验丰富的研究团队涵盖计算、生物医学、工程和临床科学。我们的
拟议的研究对开发稳健和创新的人工智能战略/方法具有更广泛的影响,以实现
临床影像人工智能应用。超越乳腺成像,我们提出的概念、范式和
方法还可以适应/适用于其他疾病和成像方式,从而为患者带来好处
广泛的生物医学成像分析。获得的任何算法、知识、见解和经验
这项研究将对信息技术的快速发展和应用产生直接而实质性的影响。
医学成像人工智能设备,最终使研究人员、临床医生和患者受益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shandong Wu其他文献
Shandong Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shandong Wu', 18)}}的其他基金
Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
- 批准号:
10713637 - 财政年份:2023
- 资助金额:
$ 28.35万 - 项目类别:
SCH: Leverage clinical knowledge to augment deep learning analysis of breast images
SCH:利用临床知识增强乳腺图像的深度学习分析
- 批准号:
10435785 - 财政年份:2021
- 资助金额:
$ 28.35万 - 项目类别:
Deep interpretation of mammographic images in breast cancer screening
乳腺癌筛查中乳腺X线摄影图像的深入解读
- 批准号:
10165659 - 财政年份:2018
- 资助金额:
$ 28.35万 - 项目类别:
Quantitative assessment of breast MRIs for breast cancer risk prediction
乳腺 MRI 定量评估用于乳腺癌风险预测
- 批准号:
9274819 - 财政年份:2015
- 资助金额:
$ 28.35万 - 项目类别:
相似国自然基金
面向智能电网用户侧的智能优化调度和人工智能算法安全研究
- 批准号:62373297
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人工智能和多模态信息预测复杂下肢动脉病变术后不良事件的算法机制研究
- 批准号:82370499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
- 批准号:32360436
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
人工智能算法嵌入街头官僚决策的行为效应及其认知触发机制研究
- 批准号:72304110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人工智能算法辅助高通量纳米等离子芯片用于前列腺癌尿液外泌体多元标志物的检测
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 28.35万 - 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
- 批准号:
10760409 - 财政年份:2023
- 资助金额:
$ 28.35万 - 项目类别:
Early detection and risk of head and neck cancer through immune based spatial omics
通过基于免疫的空间组学早期发现头颈癌并降低风险
- 批准号:
10766467 - 财政年份:2023
- 资助金额:
$ 28.35万 - 项目类别:
Automated lung sound analysis to improve the clinical diagnosis of pulmonary tuberculosis in children
自动肺音分析提高儿童肺结核的临床诊断
- 批准号:
10717389 - 财政年份:2023
- 资助金额:
$ 28.35万 - 项目类别:
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 28.35万 - 项目类别: