Deep interpretation of mammographic images in breast cancer screening
乳腺癌筛查中乳腺X线摄影图像的深入解读
基本信息
- 批准号:10165659
- 负责人:
- 金额:$ 35.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAppearanceArchitectureAreaArtificial IntelligenceBackBehaviorBenignBig DataBiological MarkersBiopsyBreast Cancer DetectionBreast Cancer Early DetectionBreast Cancer Risk FactorCharacteristicsClinicClinicalComputer AssistedComputersDataData AnalysesData ReportingData SetDecision MakingDecision ModelingDigital MammographyEngineeringGeneral PopulationGoalsImageImage AnalysisImage EnhancementIndividualInterneuronsKnowledgeLearningLesionMachine LearningMalignant NeoplasmsMammographic screeningMammographyManualsMathematicsMethodsMiningModelingNetwork-basedNeural Network SimulationPatternPerformanceProcessPsychological TransferRadiology SpecialtyReadingResearch PersonnelRiskRisk MarkerShapesSideTechniquesTestingTextureTrainingTranslatingVisualization softwareWeightWomanbreast densitybreast imagingclinical applicationclinical decision-makingclinical practicecomputerizedconvolutional neural networkdata miningdeep learningdeep neural networkdigitaldigital imagingimaging biomarkerimprovedinnovationinsightinteractive toollarge datasetsmalignant breast neoplasmmortalityneural networkpublic health relevanceradiologistrisk predictionscreeningtooltrait
项目摘要
Project Summary/Abstract
Screening mammography has been shown effective in early detection of breast cancer and in reducing
mortality. However, controversies and challenges still remain, with primary concerns on personal breast cancer
risk prediction from mammographic parenchymal markers, high recall and benign biopsy rates, and improving
radiologists’ clinical reading practices. Computerized methods have been developed in these regards, with the
goal of providing computer assistance to radiologists in making clinical decisions. While successful, the
accuracy of these methods is subject to appropriate data representation (i.e., image features) that requires
strong feature engineering. A newly emerged artificial intelligence technique, called deep learning, represents
a breakthrough in machine learning paradigms, and has revolutionized computer image analysis and many
other applications in the past few years. Breast cancer screening yields a huge amount of mammogram data
that requires in-depth interpretation to improve current clinical workup. The goal of this study is to develop and
optimize a convolutional neural network (CNN)-based computational approach to improve mammographic
imaging trait identification, analysis, and interpretation and to use this approach to address accurate breast
cancer risk prediction and reduce false recall rates. This study will be the first to examine the effects of the
revolutionary deep learning technique on performing in-depth interpretation of big screening mammogram data,
aimed at improving clinical practice. The new risk biomarkers will contribute to providing more accurate risk
prediction than currently available. The recall-decision model will help reduce false recalls (associated with
potential benign biopsy results), and better understand radiologists’ reading behaviors. Overall, the CNN-based
approach will optimize the clinical utility of screening mammography and has a high likelihood to translate to
the clinic for breast cancer screening.
项目概要/摘要
筛查性乳房X光检查已被证明可以有效地早期发现乳腺癌并减少乳腺癌的发生。
然而,争议和挑战仍然存在,主要关注的是个人乳腺癌。
根据乳房 X 线摄影实质标记物进行风险预测、高召回率和良性活检率,以及改进
放射科医生的临床阅读实践在这些方面得到了发展。
目标是为放射科医生做出临床决策提供计算机辅助。
这些方法的准确性取决于适当的数据表示(即图像特征),这需要
强特征工程代表了一种新出现的人工智能技术,称为深度学习。
机器学习范式的突破,彻底改变了计算机图像分析和许多
过去几年乳腺癌筛查的其他应用产生了大量的乳房X光检查数据。
需要深入解释以改进当前的临床检查。这项研究的目标是开发和改进。
优化基于卷积神经网络 (CNN) 的计算方法以改进乳腺 X 光检查
成像特征识别、分析和解释,并使用这种方法来解决准确的乳房问题
癌症风险预测和减少错误回忆率这项研究将是第一个检验其效果的研究。
革命性的深度学习技术对大筛查乳房X光数据进行深入解释,
旨在改善临床实践的新风险生物标志物将有助于提供更准确的风险。
预测比当前可用的召回决策模型将有助于减少错误召回(与相关)。
潜在的良性活检结果),并更好地了解放射科医生的阅读行为。
该方法将优化筛查乳房X线照相术的临床效用,并且很可能转化为
乳腺癌筛查诊所。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inaccurate Labels in Weakly-Supervised Deep Learning: Automatic Identification and Correction and Their Impact on Classification Performance.
弱监督深度学习中的不准确标签:自动识别和纠正及其对分类性能的影响。
- DOI:
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Hao, Degan;Zhang, Lei;Sumkin, Jules;Mohamed, Aly;Wu, Shandong
- 通讯作者:Wu, Shandong
A machine and human reader study on AI diagnosis model safety under attacks of adversarial images.
对抗性图像攻击下人工智能诊断模型安全性的机器和人类读者研究。
- DOI:
- 发表时间:2021-12-14
- 期刊:
- 影响因子:16.6
- 作者:Zhou, Qianwei;Zuley, Margarita;Guo, Yuan;Yang, Lu;Nair, Bronwyn;Vargo, Adrienne;Ghannam, Suzanne;Arefan, Dooman;Wu, Shandong
- 通讯作者:Wu, Shandong
Machine learning for the prediction of pathologic pneumatosis intestinalis.
机器学习用于预测病理性肠积气。
- DOI:10.1016/j.surg.2021.03.049
- 发表时间:2021-09
- 期刊:
- 影响因子:3.8
- 作者:Clancy K;Dadashzadeh ER;Handzel R;Rieser C;Moses JB;Rosenblum L;Wu S
- 通讯作者:Wu S
Medical Knowledge-Guided Deep Learning for Imbalanced Medical Image Classification
医学知识引导的深度学习用于不平衡医学图像分类
- DOI:10.3847/1538-4357/ad0047
- 发表时间:2021-11-20
- 期刊:
- 影响因子:0
- 作者:Long Gao;Chang Liu;Dooman Arefan;A. Panigrahy;M. Zuley;Sh;ong Wu;ong
- 通讯作者:ong
Response score of deep learning for out-of-distribution sample detection of medical images.
深度学习对医学图像分布外样本检测的响应分数。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:4.5
- 作者:Gao, Long;Wu, Shandong
- 通讯作者:Wu, Shandong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shandong Wu其他文献
Shandong Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shandong Wu', 18)}}的其他基金
Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
- 批准号:
10713637 - 财政年份:2023
- 资助金额:
$ 35.8万 - 项目类别:
SCH: Leverage clinical knowledge to augment deep learning analysis of breast images
SCH:利用临床知识增强乳腺图像的深度学习分析
- 批准号:
10435785 - 财政年份:2021
- 资助金额:
$ 35.8万 - 项目类别:
SCH: Leverage clinical knowledge to augment deep learning analysis of breast images
SCH:利用临床知识增强乳腺图像的深度学习分析
- 批准号:
10659235 - 财政年份:2021
- 资助金额:
$ 35.8万 - 项目类别:
Quantitative assessment of breast MRIs for breast cancer risk prediction
乳腺 MRI 定量评估用于乳腺癌风险预测
- 批准号:
9274819 - 财政年份:2015
- 资助金额:
$ 35.8万 - 项目类别:
相似国自然基金
3D打印物体表面外貌和视觉感知色差表征方法研究
- 批准号:61775170
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
服务接触中外貌刻板印象对消费者响应的影响机制研究:基于社会距离的中介
- 批准号:71602073
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
SOX10基因增强子缺失导致白来航蛋鸡羽色变异的分子机制研究
- 批准号:31672409
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
颜料彩绘文物全外貌信息表征及再现方法研究
- 批准号:61575147
- 批准年份:2015
- 资助金额:16.0 万元
- 项目类别:面上项目
观察者特征与目标特征双视角下外貌社会比较的认知神经机制研究
- 批准号:31100758
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Bioprinted Nipple-Areolar Complex Implants
3D 生物打印乳头乳晕复合植入物
- 批准号:
10672784 - 财政年份:2023
- 资助金额:
$ 35.8万 - 项目类别:
Enabling clinical tissue microstructure imaging as a diagnostic tool in wide-bore 3T MRI
将临床组织微观结构成像作为大口径 3T MRI 的诊断工具
- 批准号:
10640750 - 财政年份:2023
- 资助金额:
$ 35.8万 - 项目类别:
Molecular analysis of glutamatergic neurons derived from iPSCs containing PPM1D truncating mutations found in Jansen de Vries Syndrome
Jansen de Vries 综合征中发现的含有 PPM1D 截短突变的 iPSC 衍生的谷氨酸能神经元的分子分析
- 批准号:
10573782 - 财政年份:2023
- 资助金额:
$ 35.8万 - 项目类别:
MammoCAT Advanced Full Field Digital Mammography System
MammoCAT 先进的全视野数字乳腺 X 线摄影系统
- 批准号:
10481694 - 财政年份:2022
- 资助金额:
$ 35.8万 - 项目类别:
Systems analysis of mechanisms driving response to immunotherapy in clear cell cancers
透明细胞癌免疫疗法驱动反应机制的系统分析
- 批准号:
10704140 - 财政年份:2022
- 资助金额:
$ 35.8万 - 项目类别: