Quantitative assessment of breast MRIs for breast cancer risk prediction

乳腺 MRI 定量评估用于乳腺癌风险预测

基本信息

  • 批准号:
    9274819
  • 负责人:
  • 金额:
    $ 31.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

* DESCRIPTION (provided by applicant): Many women who are considered at high risk of developing breast cancer struggle to choose enhanced surveillance or risk-reducing interventions, which can be highly invasive and have negative side effects. Such decisions are highly personal, requiring accurate quantification of individual risk and response characteristics to risk-reducing interventions. Current breast cancer risk assessment in the clinic is imprecise at the individual level. A personalized risk assessment that incorporates a woman's particular risk profile, such as anatomical, functional, or biological characteristics of her breast, can help to individualize breast cancer risk management. Mammographic breast percentage density (MPD) has been an established independent risk factor. Recent advances in breast magnetic resonance imaging (MRI) provide exquisite and high-resolution capabilities to characterize in-vivo properties of breast tissue that are related to breast cancer risk. Recent studies, including our pilot quantitative studies, indicate that: 1) volumetric fibroglandular (i.e., dense) tissue (FGT), contrast enhancement of FGT (aka background parenchymal enhancement [BPE]), and enhancement kinetics computed on normal (not cancerous) breast tissue, all measured from dynamic contrast-enhanced MRI (DCE- MRI), are predictive of breast cancer risk; and 2) changes of BPE and FGT after risk-reducing interventions measure patients' responses to applied intervention. We propose to investigate the clinical utility of breast MRI- based quantitative measures as new non-invasive breast cancer risk factors. Our hypothesis is that objectively quantified BPE, kinetics, and FGT measured on breast DCE-MRI are biomarkers of breast cancer risk and response to risk-reducing interventions, providing predictive value independent of MPD. We will optimize our automated computer algorithms and retrospectively analyze the DCE-MRI scans of 600 women in a case- control setting, including analysis of longitudinal MRI scans acquired over an 8-year timeframe. We will assess the MRI-derived measures as a response biomarker to risk-reducing interventions (e.g., salpingo- oophorectomy, or tamoxifen/raloxifene). We have achieved strong preliminary results across all of the proposed aims. This project will combine the multi-disciplinary expertise of a computational imaging scientist, radiologists, a medical oncologist (breast cancer high-risk program director), and a biostatistician. This study is the first of its kind that uses fully automated computerized analysi to develop significant breast DCE-MRI- derived risk biomarkers. Quantitative DCE-MRI-based biomarkers will advance our understanding of intrinsic breast characteristics pertaining to individual risk profiles. This study will provide strong data and rationale for incorporating quantitative breast DCE-MRI-derived biomarkers to more accurately assess breast cancer risk and to aid in the decision-making regarding risk-reducing interventions, all at the individual leve. This study will optimize the use of a large volume of breast DCE-MRIs that are routinely performed in major medical centers; the outcome of this study is therefore highly translational to the clinic.
* 描述(由申请人提供):许多被认为具有患乳腺癌高风险的女性很难选择加强监测或降低风险的干预措施,这些措施可能具有高度侵入性并具有负面副作用,此类决定是高度个人化的,需要准确的量化。目前临床上的乳腺癌风险评估并不准确。 个体层面的个性化风险评估已成为一种独立的方法,该评估结合了女性特定的风险状况,例如乳房的解剖、功能或生物学特征,有助于个体化乳腺癌风险管理。乳腺磁共振成像 (MRI) 的最新进展提供了精确的高分辨率能力来表征与乳腺癌风险相关的乳腺组织的体内特性。最近的研究(包括我们的试点定量研究)表明:1。 ) 体积纤维腺(即致密)组织 (FGT)、FGT 对比增强(又名背景实质增强 [BPE])以及对正常(非癌性)乳腺组织计算的增强动力学,全部通过动态对比增强 MRI (DCE-MRI) 测量) ),可预测乳腺癌风险;2) 降低风险干预措施后 BPE 和 FGT 的变化测量患者对所应用干预措施的反应。基于 MRI 的定量测量作为新的非侵入性乳腺癌风险因素,我们的假设是,在乳腺 DCE-MRI 上测量的客观量化 BPE、动力学和 FGT 是乳腺癌风险和对降低风险干预措施的反应的生物标志物,提供预测价值。我们将优化我们的自动化计算机算法,并在病例对照环境中回顾性分析 600 名女性的 DCE-MRI 扫描,包括对 8 年时间范围内获得的纵向 MRI 扫描进行分析。评估 MRI 衍生措施作为降低风险干预措施(例如输卵管卵巢切除术或他莫昔芬/雷洛昔芬)的反应生物标志物。该项目将结合多学科专业知识。这项研究由计算成像科学家、放射科医生、肿瘤内科医师(乳腺癌高危项目主任)和生物统计学家共同参与,是此类研究中第一项使用全自动计算机分析来进行研究的研究。开发重要的乳腺 DCE-MRI 衍生的风险生物标志物 基于定量 DCE-MRI 的生物标志物将增进我们对与个体风险概况相关的乳腺固有特征的理解。为了更准确地评估乳腺癌风险并帮助做出有关降低风险干预措施的决策,所有这些都在个体层面上进行。这项研究将优化主要医疗中心常规进行的大量乳腺 DCE-MRI 的使用。结果;因此,这项研究对临床具有高度转化作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shandong Wu其他文献

Shandong Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shandong Wu', 18)}}的其他基金

Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
  • 批准号:
    10713637
  • 财政年份:
    2023
  • 资助金额:
    $ 31.7万
  • 项目类别:
SCH: Leverage clinical knowledge to augment deep learning analysis of breast images
SCH:利用临床知识增强乳腺图像的深度学习分析
  • 批准号:
    10435785
  • 财政年份:
    2021
  • 资助金额:
    $ 31.7万
  • 项目类别:
SCH: Leverage clinical knowledge to augment deep learning analysis of breast images
SCH:利用临床知识增强乳腺图像的深度学习分析
  • 批准号:
    10659235
  • 财政年份:
    2021
  • 资助金额:
    $ 31.7万
  • 项目类别:
Deep interpretation of mammographic images in breast cancer screening
乳腺癌筛查中乳腺X线摄影图像的深入解读
  • 批准号:
    10165659
  • 财政年份:
    2018
  • 资助金额:
    $ 31.7万
  • 项目类别:

相似国自然基金

随机阻尼波动方程的高效保结构算法研究
  • 批准号:
    12301518
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
  • 批准号:
    12371306
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
  • 批准号:
    62304037
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
  • 批准号:
    42305048
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Improving Effectiveness and Accuracy of Radiation Therapy
提高放射治疗的有效性和准确性
  • 批准号:
    7682100
  • 财政年份:
    2007
  • 资助金额:
    $ 31.7万
  • 项目类别:
Improving Effectiveness and Accuracy of Radiation Therapy
提高放射治疗的有效性和准确性
  • 批准号:
    7498507
  • 财政年份:
    2007
  • 资助金额:
    $ 31.7万
  • 项目类别:
Improving Effectiveness and Accuracy of Radiation Therapy
提高放射治疗的有效性和准确性
  • 批准号:
    7575501
  • 财政年份:
    2007
  • 资助金额:
    $ 31.7万
  • 项目类别:
AIDS Malignancy Clinical Trials Consortium
艾滋病恶性肿瘤临床试验联盟
  • 批准号:
    7689549
  • 财政年份:
    2006
  • 资助金额:
    $ 31.7万
  • 项目类别:
AIDS Malignancy Clinical Trials Consortium
艾滋病恶性肿瘤临床试验联盟
  • 批准号:
    7689545
  • 财政年份:
    2006
  • 资助金额:
    $ 31.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了