CHaracterizing Effects of Air Quality In Maternal, Newborn and Child Health: The CHEAQI-MNCH Research Project
表征空气质量对孕产妇、新生儿和儿童健康的影响:CHEAQI-MNCH 研究项目
基本信息
- 批准号:10713481
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-14 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdverse effectsAfricaAfrica South of the SaharaAfricanAirAir PollutionAppointmentBiologicalChildChild HealthChildbirthClimateClinicalCohort StudiesCollaborationsCommunitiesComplexCountryCoupledDataData AnalysesData AnalyticsData ScienceData ScientistDerivation procedureDeteriorationDevelopmentEcosystemEnsureEnvironmental HealthEnvironmental PollutionEnvironmental Risk FactorEpidemiologyExposure toFoodFundingFutureGenerationsGoalsHealthHealth care facilityHeat Stress DisordersHeat WavesHumanIn SituIndividualIndustrializationIndustryInfantInstitutionInterventionInvestigationJointsKnowledgeLifeLinkLow Birth Weight InfantLow incomeMachine LearningMaternal HealthMaternal and Child HealthMeasurementMeasuresMichiganNamesOutcomePoliciesPollutionPopulationPopulation GrowthPostdoctoral FellowPovertyPre-EclampsiaPredispositionPregnancyPregnant WomenPremature BirthProxyResearchResearch PersonnelResearch Project GrantsResourcesRiskSMART healthSocioeconomic FactorsSpontaneous abortionSystemTechniquesTemperatureTestingTranslatingTranslationsUnited States National Institutes of HealthUniversitiesUrbanizationValidationVulnerable PopulationsWashingtonWaterZimbabweadaptive interventionadverse birth outcomesadverse outcomeair monitoringambient air pollutionburden of illnesscareerclimate changeclimate impactclimate-related healthcostdata repositorydoctoral studentexperiencehealth care availabilityimprovedinnovationinterestknowledge translationneonatal healthneonatepollutantprenatal exposureprogramspromote resilienceprospectiveremote sensingresilienceresponsesensorskillsstatistical and machine learningstillbirthtool
项目摘要
Air pollution is a leading contributor to the global disease burden, which is a crucial concern
as the air quality across sub-Saharan Africa significantly and rapidly deteriorates with
accelerated urbanization, industrialization, and population growth. The synergistic association
between heat waves and air pollution is expected to exacerbate with the changing climate,
which poses a crucial threat to the health of vulnerable populations in low-income settings.
Studies which indicate associations between maternal and prenatal exposure to
environmental pollution and adverse health outcomes, highlight the need for further
investigation in African populations, as such vulnerable subpopulations are not consistently
investigated. Pregnant women who are exposed to heat stress coupled with air pollution are
more susceptible to adverse birth outcomes including; miscarriages, stillbirth, preterm birth,
low birth weight, and preeclampsia. Developing appropriate health sector responses and
adaptive interventions relies on identifying these vulnerable populations along with their level
of environmental risk. Socio-economic factors such as poverty, food and water insecurity, and
limited access to healthcare facilities perpetuate vulnerability among these communities.
Impacts of pollution exposure over periods of increased temperatures are difficult to measure
and require refined data science and analytical approaches. The current poor networks of
ground sensors for measuring air quality, piecemeal approaches to quantifying associations
with adverse health outcomes and dearth of translation from evidence to intervention warrants
a paradigm shift in approach. To address the lack of understanding of the environmental risk
impacts on the changing epidemiology in sub-Saharan Africa, the proposed research project
will aim to quantify the current and future impacts of air pollution on maternal and neonatal
health through innovative data science approaches such as machine learning, by accelerating
low-cost characterization of pollution exposure data while understanding its associations with
adverse outcomes related to pregnancy, childbirth and early life. Further to this we will develop
adaptive interventions that will help pregnant women and their children counter the risk
imposed by exposure to pollutants and build resilience against the high odds of adverse health
outcomes. The CHEAQI-MNCH project will provide an opportunity for emerging data scientists
and researchers in Africa to engage, collaborate and develop transferrable skills, while
contributing to a continental resource center for knowledge translation and dissemination
within the fields of climate and health.
空气污染是全球疾病负担的主要原因,这是一个至关重要的问题
随着撒哈拉以南非洲地区的空气质量急剧恶化
城镇化、工业化和人口增长加快。协同协会
随着气候变化,热浪和空气污染之间的矛盾预计会加剧,
这对低收入环境中弱势群体的健康构成重大威胁。
研究表明母亲和产前暴露于
环境污染和不良健康后果,凸显了进一步采取措施的必要性
对非洲人口进行调查,因为这些弱势群体的情况并不一致
调查了。暴露于热应激和空气污染的孕妇
更容易受到不良分娩结果的影响,包括;流产、死产、早产、
低出生体重和先兆子痫。制定适当的卫生部门应对措施和
适应性干预措施依赖于识别这些弱势群体及其水平
的环境风险。社会经济因素,例如贫困、粮食和水不安全,以及
获得医疗保健设施的机会有限,使这些社区的脆弱性长期存在。
气温升高期间污染暴露的影响很难测量
并需要完善的数据科学和分析方法。目前网络状况较差
用于测量空气质量的地面传感器,量化关联的零碎方法
健康结果不佳且缺乏从证据到干预依据的转化
方法的范式转变。解决对环境风险缺乏了解的问题
拟议的研究项目对撒哈拉以南非洲不断变化的流行病学的影响
旨在量化空气污染当前和未来对孕产妇和新生儿的影响
通过机器学习等创新数据科学方法,通过加速健康
污染暴露数据的低成本表征,同时了解其与
与怀孕、分娩和早年有关的不良后果。在此基础上我们将进一步开发
适应性干预措施将帮助孕妇及其孩子应对风险
减少因接触污染物而造成的影响,并增强抵御不利健康的可能性的能力
结果。 CHEAQI-MNCH 项目将为新兴数据科学家提供机会
和非洲的研究人员参与、合作和发展可转移技能,同时
为大陆知识翻译和传播资源中心做出贡献
在气候和健康领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tamara Govindasamy其他文献
Tamara Govindasamy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Growth plate-targeted IGF1 to treat Turner Syndrome
生长板靶向 IGF1 治疗特纳综合征
- 批准号:
10819340 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM) Research Core & MHD-CE
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686545 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Constructing a large-scale biomedical knowledge graph using all PubMed abstracts and PMC full-text articles and its applications
利用所有PubMed摘要和PMC全文文章构建大规模生物医学知识图谱及其应用
- 批准号:
10648553 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别: