Cancer precision medicine through spatially informative single cell image and transcriptomics data analysis
通过空间信息单细胞图像和转录组学数据分析进行癌症精准医学
基本信息
- 批准号:10754028
- 负责人:
- 金额:$ 32.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAlgorithmsArchitectureAreaArtificial IntelligenceAwardBioinformaticsBiologicalBiological AssayCancer PatientCell CommunicationCellsCharacteristicsChemotherapy and/or radiationClinicalClinical TreatmentCommunitiesComplexComputer ModelsComputing MethodologiesCytometryDataData AnalysesDevelopmentDiagnosisDiseaseEngineeringEpigenetic ProcessFoundationsFundingGenesGeneticGenomicsHeadHematoxylin and Eosin Staining MethodHeterogeneityHistopathologyHumanImageImage CytometryImaging TechniquesIn SituInvestigationLinkMalignant NeoplasmsMethodsMissionNeckNeural Network SimulationPatient-Focused OutcomesPatientsPharmaceutical PreparationsPharmacotherapyPhysiologic pulsePopulationPositioning AttributePrecision therapeuticsPrintingProductivityPrognosisPropertyProxyPublicationsRecommendationResearchResearch PersonnelResistance developmentSamplingScientistSeriesStainsTechnologyTherapeuticTherapeutic InterventionTissuesTreatment outcomeWorkaccurate diagnosiscancer cellcancer diagnosiscancer heterogeneitycancer therapycareercellular imagingclinical applicationcomputer frameworkcostdrug repurposingeffective therapyfrontiergene environment interactiongenomic platformgraph neural networkimprovedinnovationinsightmulti-scale modelingmultimodalitymultiscale datanovelnovel drug combinationnovel therapeuticsoutcome predictionpatient prognosispopulation healthprecision drugsprecision oncologyresponsesingle-cell RNA sequencingsoundsuccesstechnology platformtranscriptomicstransfer learningtumortumor heterogeneitytumor microenvironment
项目摘要
Abstract
Human cancers are highly heterogeneous, arising from genetic, epigenetic, genomic, and gene environment
interactions. Studying single-cell cancer heterogeneity is essential for effective diagnosis, prognosis and
development of personalized anti-cancer therapy. However, single-cell level tumor heterogeneity in situ with the
original spatial context is not addressed until very recently, with development of new frontier technological
platforms such as spatial transcriptomics (ST) and single cell imaging mass cytometry (IMC). Due to complexity
of these new spatial data types, computation is a major bottle neck to bring these technologies to precision
therapeutic interventions in the clinical space. In this project, we take a three-pronged approach to propose a
series of novel computational methods that will harness the power of spatially informative omics and imaging
data, for drug treatment and cancer patient prognosis predictions. Building upon a previously highly productive
R01 project, we aim to continue investigations in single cell research, with a new focus on single-cell spatial
data analysis. First, we will develop a novel personalized drug repurposing algorithm called STADS using
cancer spatial transcriptomics data. Next, build a new computational model STimpute to impute spatial
transcriptomics data from easily accessible histopathology image data, using transfer learning and graph neural
network (GNN) models. STimpute will allow predictions of drugs from histopathology data, by using imputed ST
data as the proxy input of STADS. Lastly, we will build a new computational framework scImageProg to predict
patient survival at the population level from the single-cell image cytometry data, accomplishing multi-scale
modeling to link single-cell data to population health. The work will be expected to have transformative clinical
impacts from various cutting-edge spatially informative and complex genomics and imaging data types.
抽象的
人类癌症是高度异质的,是由遗传,表观遗传,基因组和基因环境引起的
互动。研究单细胞癌异质性对于有效诊断,预后和
开发个性化的抗癌疗法。但是,单细胞水平肿瘤异质性原位与
随着新的Frontier技术的发展,原始的空间环境直到最近才解决
诸如空间转录组学(ST)和单细胞成像质量细胞术(IMC)之类的平台。由于复杂性
在这些新的空间数据类型中,计算是将这些技术精确的主要瓶颈
临床空间中的治疗干预措施。在这个项目中,我们采用三管齐下的方法来提出
一系列新型计算方法,这些方法将利用空间信息丰富的OMICS和Imaging的力量
用于药物治疗和癌症患者预后预测的数据。以先前高产的为基础
R01项目,我们旨在继续进行单细胞研究的调查,新的重点是单细胞空间
数据分析。首先,我们将开发一种新型的个性化药物重新利用算法,称为Stads使用
癌症空间转录组学数据。接下来,构建一种新的计算模型刺激以估算空间
使用转移学习和图形神经,来自易于访问的组织病理学图像数据的转录组学数据
网络(GNN)模型。 Stimpute将使用估算的ST来预测组织病理学数据的药物
数据作为Stads的代理输入。最后,我们将建立一个新的计算框架scimageprog来预测
从单细胞图像细胞仪数据中,患者在人群水平上的生存,完成多尺度
建模将单电池数据与人群健康联系起来。预计这项工作将具有变革性的临床
来自各种尖端的空间信息和复杂基因组学和成像数据类型的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lana X Garmire其他文献
Lana X Garmire的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lana X Garmire', 18)}}的其他基金
DR. EPS: Drug Repurposing for Extended Patient Survival
博士。
- 批准号:
10022322 - 财政年份:2019
- 资助金额:
$ 32.04万 - 项目类别:
DR. EPS: Drug Repurposing for Extended Patient Survival
博士。
- 批准号:
10186808 - 财政年份:2019
- 资助金额:
$ 32.04万 - 项目类别:
DR. EPS: Drug Repurposing for Extended Patient Survival
博士。
- 批准号:
10465034 - 财政年份:2019
- 资助金额:
$ 32.04万 - 项目类别:
An Integrative Bioinformatics Platform with Application in Single Cancer Cells
应用于单个癌细胞的综合生物信息学平台
- 批准号:
9321082 - 财政年份:2016
- 资助金额:
$ 32.04万 - 项目类别:
An Integrative Bioinformatics Platform with Application in Single Cancer Cells
应用于单个癌细胞的综合生物信息学平台
- 批准号:
10004166 - 财政年份:2016
- 资助金额:
$ 32.04万 - 项目类别:
An Integrative Bioinformatics Platform with Application in Single Cancer Cells
应用于单个癌细胞的综合生物信息学平台
- 批准号:
9160242 - 财政年份:2016
- 资助金额:
$ 32.04万 - 项目类别:
An Integrative Omics Approach to Identify Biomarkers Related to Preeclampsia and Breast Cancer Risks
识别与先兆子痫和乳腺癌风险相关的生物标志物的综合组学方法
- 批准号:
9162127 - 财政年份:2016
- 资助金额:
$ 32.04万 - 项目类别:
An Integrative Omics Approach to Identify Biomarkers Related to Preeclampsia and Breast Cancer Risks
识别与先兆子痫和乳腺癌风险相关的生物标志物的综合组学方法
- 批准号:
9542867 - 财政年份:2016
- 资助金额:
$ 32.04万 - 项目类别:
An Integrative Omics Approach to Identify Biomarkers Related to Preeclampsia and Breast Cancer Risks
识别与先兆子痫和乳腺癌风险相关的生物标志物的综合组学方法
- 批准号:
10076552 - 财政年份:2016
- 资助金额:
$ 32.04万 - 项目类别:
An Integrative Bioinformatics Approach to Study Single Cancer Cell Heterogeneity
研究单个癌细胞异质性的综合生物信息学方法
- 批准号:
9095313 - 财政年份:2014
- 资助金额:
$ 32.04万 - 项目类别:
相似国自然基金
锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
- 批准号:82301139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
万寿菊黄酮通过MAPK/Nrf2-ARE通路缓解肉鸡肠道氧化应激损伤的作用机制
- 批准号:32302787
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
- 批准号:32303021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
- 批准号:82373030
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Applying Computational Phenotypes To Assess Mental Health Disorders Among Transgender Patients in the United States
应用计算表型评估美国跨性别患者的心理健康障碍
- 批准号:
10604723 - 财政年份:2023
- 资助金额:
$ 32.04万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 32.04万 - 项目类别:
Toward Accurate Cardiovascular Disease Prediction in Hispanics/Latinos: Modeling Risk and Resilience Factors
实现西班牙裔/拉丁裔的准确心血管疾病预测:风险和弹性因素建模
- 批准号:
10852318 - 财政年份:2023
- 资助金额:
$ 32.04万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 32.04万 - 项目类别:
Single viewpoint panoramic imaging technology for colonoscopy
肠镜单视点全景成像技术
- 批准号:
10580165 - 财政年份:2023
- 资助金额:
$ 32.04万 - 项目类别: