Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
基本信息
- 批准号:10735564
- 负责人:
- 金额:$ 220.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAgreementAlgorithmic AnalysisAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease related dementiaArchivesBrainBrain imagingBrain regionCaliforniaCategoriesClinicalCollaborationsCommunitiesComplementComputer Vision SystemsComputer softwareDataData AnalysesData SetDevelopmentDiagnosisDiagnosticEngineeringEnsureEvaluationFAIR principlesFoundationsFundingGeographic LocationsGeographyGrantHeterogeneityHistologicHistologyHumanImageImage AnalysisImaging technologyIndividualInformaticsInfrastructureInstitutionLegalLibrariesLinkLocationMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsManualsManufacturerMedical ImagingMetadataMethodsMicroscopicModelingMonitorNamesNational Cancer InstituteNerve DegenerationNeurofibrillary TanglesNomenclatureOccupationsPathologyPatternPeer ReviewPrivacyProcessRadiology SpecialtyReadabilityResearchResearch PersonnelResourcesRunningSchemeScienceSecureSecuritySiteSlideStagingStainsStandardizationSurveysSystemTechnologyTestingThe Cancer Genome AtlasTissuesTrainingUnited States National Institutes of HealthUniversitiesVisualizationadvanced analyticsbrain tissuedata dictionarydata qualitydata sharingdata standardsdesigndigitaldigital imagingfile formatimaging systemimprovedinnovationmachine learning algorithmmachine learning modelmetadata standardsmicroscopic imagingmultidisciplinaryneuropathologyopen sourceopen source toolpublic health relevancesharing platformstatisticstoolweb platformweb-based toolwhole slide imaging
项目摘要
Recent advances in machine learning and computer vision have had transformative effects on the medical imaging field. Algorithms can now automatically identify patterns and objects in images, often with a degree of precision rivaling human experts for certain tasks. Key to these advances is the availability of large, well-curated datasets in machine-readable formats. Neuropathologic evaluation of brain tissue is central to the diagnosis and staging of Alzheimer's Disease (AD) AD and Related Dementias (AD/ADRDs) but the underlying histology data is not widely and easily shared. The increasing availability of whole slide imaging systems now makes the distribution of histologic data simpler and enables image analysis algorithms to be developed and applied, but numerous barriers exist before such technology can be widely adopted by the neurodegenerative research community. The lack of standard file formats and naming schemas, ensuring subject privacy, subject de-identification, and the enormous size of these images are ongoing challenges. Through NCI/NIH U24 and U01 grants focused on cancer-related image analysis workflows, we have previously developed the Digital Slide Archive (DSA). In this project, we propose to enhance the DSA platform with functionality geared specifically for the neurodegenerative neuropathology community, creating a federated open-source Brain Digital Slide Archive (BDSA) platform. The BDSA is designed to allow the seamless sharing of imaging data, annotations, and metadata amongst participating sites, and to enable the training and deployment of image analysis algorithms on multi-institutional data sets. This includes developing a standardized data dictionary to describe slide-level metadata, and tooling to facilitate data cleanup. We will test these tools and infrastructure by conducting various proof of principal analysis workflows. These include the ability to centrally discover and annotate images stored in geographically distinct regions and run algorithms to identify neurofibrillary tangles (NFTs) using slides from 4 distinct geographic sites (Emory University, University of California Davis, University of Pittsburgh, and Northwestern University) digitized using multiple scanner models and manufacturers. The system will also allow users to securely transfer images to a central location, which may be necessary for certain analytic workflows. These objectives, paired with our complimentary and synergistic expertise in informatics, neuropathology, and engineering, will aid in the development of robust, scalable, reliable, and shareable platforms to provide a foundation for innovative and transformative science addressing a critical unmet need in AD/ADRD research.
机器学习和计算机视觉的最新进展对医学成像领域产生了变革性的影响。现在,算法可以自动识别图像中的模式和对象,通常具有一定程度的精确度与人类专家的某些任务匹配。这些进步的关键是以机器可读格式的大型,精心策划的数据集的可用性。脑组织的神经病理学评估对于阿尔茨海默氏病(AD)AD和相关痴呆症(AD/ADRD)的诊断和分期至关重要,但是潜在的组织学数据并没有广泛易于共享。现在,整个幻灯片成像系统的可用性提高使组织学数据的分布变得更加简单,并可以开发和应用图像分析算法,但是在神经退行性研究社区广泛采用此类技术之前,存在许多障碍。缺乏标准文件格式和命名模式,确保主题隐私,主题去识别以及这些图像的巨大规模是持续的挑战。通过NCI/NIH U24和U01赠款,集中于与癌症相关的图像分析工作流程,我们以前已经开发了数字幻灯片档案(DSA)。在这个项目中,我们建议通过专门针对神经退行性神经病理学社区的功能来增强DSA平台,创建一个联合的开源开源脑数字幻灯片档案(BDSA)平台。 BDSA旨在允许参与站点之间的成像数据,注释和元数据的无缝共享,并可以在多机构数据集上培训和部署图像分析算法。这包括开发标准化的数据词典来描述幻灯片级元数据以及促进数据清理的工具。我们将通过进行主体分析工作流的各种证明来测试这些工具和基础架构。其中包括使用来自4个不同地理位置的幻灯片(埃默里大学,加利福尼亚大学戴维斯大学,匹兹堡大学和西北大学)使用多个Scanner模型和制造商进行数字化数字化的能力,并运行算法并运行算法,以识别神经原纤维缠结(NFTS)(NFTS)(NFTS)(NFTS)(NFTS)。该系统还将允许用户将图像安全地传输到中心位置,这对于某些分析工作流程可能是必需的。这些目标与我们在信息学,神经病理学和工程学方面的免费和协同专业知识相结合,将有助于开发强大,可扩展,可靠和可共享的平台,为创新和变革性的科学提供基础,以满足AD/ADRD研究中至关重要的未满足需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Cooper其他文献
Lee Cooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Cooper', 18)}}的其他基金
Improved whole-brain spectroscopic MRI for radiation therapy planning
改进的全脑光谱 MRI 用于放射治疗计划
- 批准号:
10618320 - 财政年份:2022
- 资助金额:
$ 220.95万 - 项目类别:
Improved whole-brain spectroscopic MRI for radiation therapy planning
改进的全脑光谱 MRI 用于放射治疗计划
- 批准号:
10443355 - 财政年份:2022
- 资助金额:
$ 220.95万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10609284 - 财政年份:2021
- 资助金额:
$ 220.95万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10466914 - 财政年份:2021
- 资助金额:
$ 220.95万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10298684 - 财政年份:2021
- 资助金额:
$ 220.95万 - 项目类别:
Guiding humans to create better labeled datasets for machine learning in biomedical research
指导人类为生物医学研究中的机器学习创建更好的标记数据集
- 批准号:
10646429 - 财政年份:2021
- 资助金额:
$ 220.95万 - 项目类别:
Cloud strategies for improving cost, scalability, and accessibility of a machine learning system for pathology images
用于提高病理图像机器学习系统的成本、可扩展性和可访问性的云策略
- 批准号:
10824959 - 财政年份:2021
- 资助金额:
$ 220.95万 - 项目类别:
Informatics Tools for Quantitative Digital Pathology Profiling and Integrated Prognostic Modeling
用于定量数字病理学分析和综合预后建模的信息学工具
- 批准号:
10070213 - 财政年份:2018
- 资助金额:
$ 220.95万 - 项目类别:
Improved Whole-Brain Spectroscopic MRI for Radiation Treatment Planning
改进的全脑光谱 MRI 用于放射治疗计划
- 批准号:
9791190 - 财政年份:2018
- 资助金额:
$ 220.95万 - 项目类别:
Informatics Tools for Quantitative Digital Pathology Profiling and Integrated Prognostic Modeling
用于定量数字病理学分析和综合预后建模的信息学工具
- 批准号:
9929565 - 财政年份:2018
- 资助金额:
$ 220.95万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dissemination and implementation of DIGEST™ as an evidence-based measurement tool for dysphagia in cancer
传播和实施 DIGEST™ 作为癌症吞咽困难的循证测量工具
- 批准号:
10584824 - 财政年份:2023
- 资助金额:
$ 220.95万 - 项目类别:
Effects of a Targeted Web-Based Suicide Prevention Intervention on Suicidal Ideation and Self-Directed Violence: A Randomized Controlled Trial in Veterans
基于网络的有针对性的自杀预防干预对自杀意念和自我导向暴力的影响:退伍军人的随机对照试验
- 批准号:
10589275 - 财政年份:2023
- 资助金额:
$ 220.95万 - 项目类别:
Intervention to Reduce Depression Among Elder Abuse Victims: Type 1 Hybrid Trial of Tele-PROTECT
减少老年虐待受害者抑郁症的干预措施:Tele-PROTECT 1 型混合试验
- 批准号:
10645687 - 财政年份:2023
- 资助金额:
$ 220.95万 - 项目类别:
Diagnostic and treatment landscape of pyoderma gangrenosum
坏疽性脓皮病的诊治现状
- 批准号:
10732688 - 财政年份:2023
- 资助金额:
$ 220.95万 - 项目类别:
DeepCertainty: Deep Learning for Contextual Diagnostic Uncertainty Measurement in Radiology Reports
DeepCertainty:放射学报告中上下文诊断不确定性测量的深度学习
- 批准号:
10593770 - 财政年份:2023
- 资助金额:
$ 220.95万 - 项目类别: