DeepCertainty: Deep Learning for Contextual Diagnostic Uncertainty Measurement in Radiology Reports

DeepCertainty:放射学报告中上下文诊断不确定性测量的深度学习

基本信息

  • 批准号:
    10593770
  • 负责人:
  • 金额:
    $ 18.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

PE becomes the third leading cause of cardiovascular-related death, and more than 500,000 cases of PE occur in the United States (US) every year, resulting in approximately 200,000 deaths and hospitalization of over 250,000 patients. Rapid and accurate diagnosis of PE are of paramount importance to ensure the highest quality of care. Every year 1-2% of the 120 million emergency department (ED) patients in the US undergo computed tomographic pulmonary angiography (CTPA) for PE. The referring physicians rely heavily on CTPA reports diagnosing or excluding PEs. Clarity of the radiology report is one of the most critical qualities, and the American College of Radiology has emphasized a need for precision communication in radiological reports. Yet communicating uncertainty effectively in radiology reports is challenging. Referring physicians may interpret radiologists’ textual expressions that convey diagnostic confidence differently than intended. The gap between radiologists’ intended message and the referring physicians’ interpretation can not be completely resolved through structured reporting or standardized lexicon. Unnecessary hedging language in CTPA reports may further worsen the reporting ambiguity and may lead to inappropriate treatment of patients. Therefore, we aim to develop a deep learning-based approach for context-aware (un)certainty assessment (DeepCertainty), which is end-to-end trainable, calibratable, generalizable, scalable, and explainable. It would allow for fine- grained uncertainty measurement and standardization, facilitate consistent and accurate diagnostic certainty communication in CTPA reports and thus improve PE care. This study will build the foundation for future implementation and integration of DeepCertainty into clinical workflows to prompt real-time low-certainty alerts for improving PE diagnostic reporting quality and clarity, which will inform better treatment decisions for ED patients with suspected PE.
PE 成为心血管相关死亡的第三大原因,超过 50 万例 PE 病例 美国每年都会发生这种情况,导致约 20 万人死亡和住院 超过 250,000 名患者的 PE 快速、准确诊断对于确保最高的治疗效果至关重要。 每年,美国 1.2 亿急诊科 (ED) 患者中有 1-2% 接受治疗。 肺栓塞的计算机断层扫描肺血管造影 (CTPA) 转诊医生严重依赖 CTPA。 诊断或排除 PE 的报告 放射学报告的清晰度是最关键的质量之一,并且 美国放射学院强调放射报告中精确沟通的必要性。 然而,在放射学报告中有效传达不确定性可能具有挑战性。 解读放射科医生传达诊断信心的文字表达与预期不同。 放射科医生的预期信息与转诊医生的解释之间不能完全一致 通过结构化报告或标准化词汇来解决 CTPA 报告中不必要的对冲语言。 可能会进一步加剧报告的模糊性,并可能导致对患者的不当治疗。 旨在开发一种基于深度学习的方法来进行上下文感知(非)确定性评估(DeepCertainty), 它是端到端的可训练、可校准、可推广、可扩展和可解释的。 粒度不确定性测量和标准化,有助于一致和准确的诊断确定性 CTPA 报告中的沟通,从而改善 PE 护理。这项研究将为未来奠定基础。 将 DeepCertainty 实施并集成到临床工作流程中,以提示实时低确定性警报 提高 PE 诊断报告的质量和清晰度,这将为 ED 做出更好的治疗决策提供依据 疑似PE患者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feifan Liu其他文献

Feifan Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feifan Liu', 18)}}的其他基金

Exploratory Research Project - ADAPT
探索性研究项目 - ADAPT
  • 批准号:
    10577122
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Signature Research Project
签名研究项目
  • 批准号:
    10577120
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
Development of a Video-based Personal Protective Equipment Monitoring System
基于视频的个人防护装备监控系统的开发
  • 批准号:
    10585548
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
Methods Core
方法核心
  • 批准号:
    10575208
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
Effects of a Targeted Web-Based Suicide Prevention Intervention on Suicidal Ideation and Self-Directed Violence: A Randomized Controlled Trial in Veterans
基于网络的有针对性的自杀预防干预对自杀意念和自我导向暴力的影响:退伍军人的随机对照试验
  • 批准号:
    10589275
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
Climate & Health Actionable Research and Translation Center
气候
  • 批准号:
    10835462
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了