Reverse Tissue-Manufacturing of the Multicellular Sinoatrial Node Organoids
多细胞窦房结类器官的逆向组织制造
基本信息
- 批准号:10660542
- 负责人:
- 金额:$ 61.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAdenosineAdultArchitectureArrhythmiaAtrioventricular BlockBiological AssayBiological PacemakersCalciumCardiacCardiac MyocytesCell ReprogrammingCellsChildhoodChronicClinicalClock proteinConnective TissueCoupledDataDevelopmentDiseaseEngineeringEquipment MalfunctionFibroblastsFunctional disorderGene ExpressionGenetic TranscriptionGoalsHCN4 geneHealthcareHeart ArrestHeart AtriumHeart BlockHeart failureHumanHybridsImpairmentImplantIn VitroInferiorLongitudinal StudiesMediatingMembraneModelingMyocardial dysfunctionNewborn InfantNodalOperative Surgical ProceduresOrganoidsPacemakersPathway interactionsPatientsPositioning AttributePreclinical TestingPrevalenceRodent ModelSeveritiesShapesSinoatrial NodeSiteSomatic CellStructureTestingTheoretical modelTissuescare burdencell typechronotropicdesigndrug developmenteffective therapyelectronic pacemakerheart rhythmimplantationimprovedin silicoin vivoinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesmanufacturemillisecondnodal myocytenovel therapeutic interventionoptogeneticsoverexpressionpediatric patientspreventprogramsprotein expressionpublic health relevancestem cell differentiationtargeted treatmenttool
项目摘要
Project Summary/Abstract
The recent increasing prevalence, severity, and healthcare burden of sinoatrial (SA) node dysfunction
emphasize the need for more detailed studies of SA node functions that allow for effective therapy to treat and
prevent SA node dysfunction. The major mechanisms of the dysfunction are the impaired ability of pacemaker
cells to induce spontaneous rhythm (automaticity) and adverse remodeling in their electric conduction to
surrounding atrial tissues (SA conduction). However, the current SA node or pacemaker models have been
limited to theoretical models and isolated single cell-type cells or cell clusters, leaving a gap to model the
autonomous cardiac contraction and heart rhythm and dysfunctions in automaticity and SA conduction. Moreover,
the current single cell-type pacemakers worsened heart rhythm stability during one-month in vivo integration,
which limits its application as a clinically viable biological pacemaker capable of generating robust pacemaking
and conduction.
To address the current limitation of SA node models, this proposal aims to develop a three-dimensional
multicellular SA node organoid by reproducing human SA node’s multicellular tissue structure and fail-safe
mechanisms. In contrast to the single cell-type biological pacemakers, human SA node is a natural organoid with
elaborate insulated architecture and heterogeneous cellular composition. Moreover, the human SA node is
equipped with redundant pacemaker sites and conduction pathways to protect the rhythm against adverse
chronotropic stimulations. Thus, inspired by SA node’s structure and fail-safe mechanism, we aim at enhancing
robustness in both automaticity and SA conduction: First, we will focus on enhancing automaticity of SA
node organoids by identifying the expression of pacemaker membrane and calcium clock proteins, cell
composition, and shape (Aim 1). Second, we will concentrate on improving conduction of SA node organoids
by coordinating multiple pacemaker sites and conduction pathways (Aim 2). Last, we will evaluate the
robustness of the SA node organoids in in vitro setting and in vivo atrioventricular block rodent model (Aim 3).
These studies will define if tissue-level architecture and multicellular compositions mediate SA node’s robust
pacemaking and conduction and may reveal a high-fidelity tissue-level biological pacemaker as a novel
therapeutic strategy for SA node dysfunctions. The proposed organoids will be suitable for human preclinical
testing assays to accelerate drug development, for dissecting patient-specific SA node disease pathophysiology,
and for the development of implantable biological pacemakers.
项目概要/摘要
最近窦房结功能障碍的患病率、严重程度和医疗负担不断增加
强调需要对窦房结功能进行更详细的研究,以便采取有效的治疗方法
预防SA结功能障碍的主要机制是起搏器能力受损。
细胞诱导自发节律(自动性)和电传导的不良重塑
周围心房组织(SA传导)然而,目前的SA结或起搏器模型已被证实。
仅限于理论模型和孤立的单细胞类型细胞或细胞簇,留下了建模的空白
自主性心脏收缩和心律以及自主性和 SA 传导功能障碍。
目前的单细胞型起搏器在一个月的体内整合过程中心律稳定性恶化,
这限制了其作为能够产生强大起搏作用的临床上可行的生物起搏器的应用
和传导。
为了解决当前 SA 节点模型的局限性,该提案旨在开发一个三维
多细胞 SA 结类器官,通过复制人类 SA 结的多细胞组织结构和故障安全
与单细胞型生物起搏器相比,人类 SA 节点是一种天然的类器官。
复杂的绝缘结构和异质细胞组成此外,人类 SA 节点是。
配备冗余起搏器部位和传导通路,以保护节律免受不利影响
因此,受SA节点结构和故障安全机制的启发,我们的目标是增强变时性刺激。
自动化和SA传导的鲁棒性:首先,我们将重点提高SA的自动化程度
通过识别起搏器膜和钙时钟蛋白、细胞的表达,节点类器官
其次,我们将集中精力改善 SA 节点类器官的传导。
通过协调多个起搏器部位和传导通路(目标 2)。
SA 结类器官在体外环境和体内房室传导阻滞啮齿动物模型中的稳健性(目标 3)。
这些研究将确定组织水平结构和多细胞成分是否介导 SA 节点的稳健性
起搏和传导,并可能揭示高保真组织级生物起搏器作为一种新型
所提出的类器官将适用于人类临床前治疗。
加速药物开发的化验测试,用于剖析患者特定的窦房结疾病病理生理学,
以及用于开发植入式生物起搏器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sung Jin Park其他文献
Sung Jin Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sung Jin Park', 18)}}的其他基金
Molecular mechanisms underlying morphogenesis of the tectorial membrane
盖膜形态发生的分子机制
- 批准号:
10348212 - 财政年份:2021
- 资助金额:
$ 61.08万 - 项目类别:
Molecular mechanisms underlying morphogenesis of the tectorial membrane
盖膜形态发生的分子机制
- 批准号:
10210885 - 财政年份:2021
- 资助金额:
$ 61.08万 - 项目类别:
Molecular mechanisms underlying morphogenesis of the tectorial membrane
盖膜形态发生的分子机制
- 批准号:
10552571 - 财政年份:2021
- 资助金额:
$ 61.08万 - 项目类别:
Signaling mechanism for synapse formation and function regulated by the release of GPI-anchored synaptogenic factors from astrocytes
星形胶质细胞释放 GPI 锚定的突触因子调节突触形成和功能的信号机制
- 批准号:
10188651 - 财政年份:2017
- 资助金额:
$ 61.08万 - 项目类别:
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 61.08万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 61.08万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 61.08万 - 项目类别:
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
- 批准号:
10714540 - 财政年份:2023
- 资助金额:
$ 61.08万 - 项目类别:
Defining molecular mechanisms by which stimulant evoked dopamine drives inflammation and neuronal dysfunction in neuroHIV
定义兴奋剂诱发多巴胺驱动神经艾滋病毒炎症和神经元功能障碍的分子机制
- 批准号:
10685160 - 财政年份:2023
- 资助金额:
$ 61.08万 - 项目类别: