Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
基本信息
- 批准号:10659772
- 负责人:
- 金额:$ 40.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-05 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAffectAlginatesArchitectureBathingBiomimeticsBlood VesselsCartilageCell CommunicationCellsChemicalsClinicalCommunitiesComplexDefectDegenerative polyarthritisEndothelial CellsEngineeringEvaluationFaceFibrocartilagesFunctional RegenerationGelGeometryGrowth FactorHealthHumanHydrogelsImmuneIndividualInferiorInflammatoryKneeLiquid substanceLocationMaintenanceMechanicsMesenchymal Stem CellsModelingModificationMovementOperative Surgical ProceduresOrthopedicsOryctolagus cuniculusPatientsPersonsPhasePhenotypePhysical condensationPositioning AttributePrintingProceduresPropertyReactionResearch PersonnelResolutionRoleShapesSolidStructureTechniquesTechnologyTherapeuticThickThinnessTissue EngineeringTissue constructsTissuesVascularizationbioinkbioprintingbioscaffoldbonebone repaircartilage repaircartilaginousdesignendothelial stem cellhealinghuman stem cellsimprovedin vivoinnovationnovelosteochondral tissueosteogenicparticlephysical propertyrepairedscaffoldspatiotemporalstandard of carestem cellsthree dimensional structuretissue injurytissue regeneration
项目摘要
Abstract
Osteochondral defects of the knee are common worldwide, yet there are few viable options for patients with
damaged osteochondral tissue as current treatments do not consistently regenerate functional tissue. The
standard of care for osteochondral defect repair is arthroscopic microfracture surgery, but this procedure often
results in formation of mechanically inferior fibrocartilage formation. To overcome limitations of this and other
surgical procedures, tissue engineering strategies, such as cell-laden biomaterial scaffolds, are promising
alternative approaches to treat these defects. However, scaffold-based strategies face several challenges, such
as interference with critical cell-cell interactions, potential immune and/or inflammatory reaction to the scaffold
and its degradation byproducts, and unsynchronized scaffold degradation rate with that of new tissue formation.
New cellular condensation strategies without a scaffold address these issues, however, it is still difficult to
precisely control the architecture of the engineered tissues to mimic the sophisticated three-dimensional (3D)
structure and organization of natural osteochondral tissues and their structure-derived functions. Recently, 3D
bioprinting has been applied in tissue engineering with the potential to create complicated, high-resolution 3D
structures. In addition, we have engineered the first technology capable of 3D printing a cell-only bioink and
maintaining the printed structure, which is necessary to form cell condensations. The hypothesis of this proposal
is that cellular condensation-based prevascularized osteochondral tissue constructs of precisely defined
geometries can be directly assembled with human stem cells and endothelial cells via 3D bioprinting into a
photocurable liquid-like solid, shear-thinning and rapid self-healing microgel slurry with spatially controlled
presentation of tissue specific growth factors. Microgel photocrosslinking after printing will provide temporary
mechanical stability for the printed constructs during culture to permit cellular condensation formation. This cell-
only bioprinting strategy will be implemented to print seamlessly continuous two-phase osteochondral tissue
constructs with a prevascularized bone phase and a cartilage phase. Specifically, this proposal aims to (1)
determine the role of microgel properties on the resolution and fidelity of the cell-only 3D printed constructs, (2)
engineer prevascularized osteochondral constructs with individual cell-only bioinks by spatiotemporally
controlled delivery of vasculogenic, osteogenic and chondrogenic growth factors, and (3) determine the clinical
potential of the 3D printed prevascularized osteochondral constructs by evaluation of new osteochondral tissue
formation and integration with the host vascular networks and bone and cartilage repair in a full-thickness
osteochondral rabbit defect model. This platform strategy has the potential to greatly enhance the lives of those
suffering from osteochondral defects and may enable the engineering of other complex functional tissues in the
body.
抽象的
膝关节骨软骨缺损在世界范围内很常见,但对于患有膝关节骨软骨缺损的患者来说,几乎没有可行的选择
受损的骨软骨组织,因为目前的治疗方法不能持续再生功能组织。这
骨软骨缺损修复的护理标准是关节镜微骨折手术,但该手术通常
导致机械性能较差的纤维软骨形成。为了克服这个和其他的限制
外科手术、组织工程策略(例如载有细胞的生物材料支架)前景广阔
治疗这些缺陷的替代方法。然而,基于支架的策略面临着一些挑战,例如
干扰关键的细胞间相互作用、支架的潜在免疫和/或炎症反应
及其降解副产物,以及支架降解速率与新组织形成不同步。
没有支架的新细胞凝聚策略解决了这些问题,然而,仍然很难
精确控制工程组织的结构以模仿复杂的三维 (3D)
天然骨软骨组织的结构和组织及其结构衍生的功能。最近,3D
生物打印已应用于组织工程,具有创建复杂、高分辨率 3D 的潜力
结构。此外,我们还设计了第一项能够 3D 打印纯细胞生物墨水的技术,
保持印刷结构,这是形成细胞凝聚所必需的。本提案的假设
是基于细胞浓缩的预血管化骨软骨组织结构,其结构精确定义
几何形状可以通过 3D 生物打印直接与人类干细胞和内皮细胞组装成
空间控制的光固化类液固体、剪切稀化和快速自修复微凝胶浆料
组织特异性生长因子的呈现。打印后的微凝胶光交联将提供暂时的
培养过程中印刷结构的机械稳定性,以允许细胞凝结形成。这个细胞——
将实施唯一的生物打印策略来打印无缝连续的两相骨软骨组织
具有预血管化骨相和软骨相的构造。具体而言,该提案旨在 (1)
确定微凝胶特性对纯细胞 3D 打印结构的分辨率和保真度的作用,(2)
通过时空设计,使用仅单个细胞的生物墨水来设计预血管化骨软骨结构
血管生长因子、成骨生长因子和软骨生长因子的受控递送,以及(3)确定临床
通过评估新骨软骨组织来评估 3D 打印预血管化骨软骨结构的潜力
与宿主血管网络的形成和整合以及全层骨和软骨的修复
兔骨软骨缺损模型。该平台战略有可能极大地改善人们的生活
患有骨软骨缺陷,并可能使工程中的其他复杂功能组织成为可能
身体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eben Alsberg其他文献
Eben Alsberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eben Alsberg', 18)}}的其他基金
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 40.36万 - 项目类别:
Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
- 批准号:
10354662 - 财政年份:2022
- 资助金额:
$ 40.36万 - 项目类别:
Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
- 批准号:
10570918 - 财政年份:2022
- 资助金额:
$ 40.36万 - 项目类别:
Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
- 批准号:
9728716 - 财政年份:2019
- 资助金额:
$ 40.36万 - 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
- 批准号:
9923657 - 财政年份:2019
- 资助金额:
$ 40.36万 - 项目类别:
High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
- 批准号:
9732428 - 财政年份:2019
- 资助金额:
$ 40.36万 - 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
- 批准号:
9899066 - 财政年份:2019
- 资助金额:
$ 40.36万 - 项目类别:
Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
- 批准号:
10263140 - 财政年份:2019
- 资助金额:
$ 40.36万 - 项目类别:
Opposing RNAi molecule gradient constructs to repair osteochondral defects
相反的RNAi分子梯度构建修复骨软骨缺损
- 批准号:
9265388 - 财政年份:2016
- 资助金额:
$ 40.36万 - 项目类别:
High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
- 批准号:
9069425 - 财政年份:2015
- 资助金额:
$ 40.36万 - 项目类别:
相似国自然基金
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 40.36万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 40.36万 - 项目类别:
A novel breast cancer therapy based on secreted protein ligands from CD36+ fibroblasts
基于 CD36 成纤维细胞分泌蛋白配体的新型乳腺癌疗法
- 批准号:
10635290 - 财政年份:2023
- 资助金额:
$ 40.36万 - 项目类别:
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 40.36万 - 项目类别:
Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
- 批准号:
10729161 - 财政年份:2023
- 资助金额:
$ 40.36万 - 项目类别: