Stimulated Brillouin Flow Cytometry for biomechanical assessment of metastatic potential

受激布里渊流式细胞仪用于转移潜能生物力学评估

基本信息

项目摘要

ABSTRACT While our ability to detect and treat primary tumors has significantly increased in the past decade, it remains difficult to diagnose the origination of metastasis which remains responsible for nearly 90% of cancer-related deaths. In this respect, recently, the critical role of the mechanical state of tumors and tumor cells has been recognized for tumor progression, malignancy transformation and metastasis but it remains poorly exploited due to the lack of suitable measurement tools. Many microfluidic deformability approaches have recently emerged, but they only give an average value of the overall cell mechanical properties, while it would be important to separate nucleus vs cytoskeleton contributions, and they need mechanical stimulation to probe properties, which is deleterious since cells strongly react to mechanical stimuli. In the past few years, we have been developing an all-optical approach to this challenge, named Brillouin microscopy, and strongly established it in tumor biology to characterize cell mechanics during metastatic cascade. However, current technology is inherently limited in speed (~50ms/point), as it relies on spontaneous Brillouin interaction, and thus is not suitable for rapid screening/sorting of tumor cells. Here, we will develop stimulated Brillouin cytometry which 1) increases speed by ~100-fold and 2) provides additional contrast mechanisms such as viscosity and mass density with micron-scale resolution. Based on this breakthrough, we will develop and validate a flow cytometry/cell sorting platform using elastic modulus, viscosity, and density as label-free contrast mechanisms (Aim 1). We will then validate our mechanical assessment of metastatic cells against microfluidic assays to assess migration and proliferation and in mice models to assess cell’s metastatic ability in vivo (Aim 2). The rigorous process of technology development, validation, benchmarking and field-testing will yield a platform with unprecedented capabilities to characterize and sort cells based on their mechanical properties within an instrument compatible with traditional flow cytometry, thus ready to be widely adopted by the cancer biology community. The proposal features the collaboration between optical technology experts (UMD) and cancer metastasis pioneers in both in vitro (JHU) and in vivo (UMB) settings with an established track record of fruitful collaboration.
抽象的 虽然我们检测和治疗原发性肿瘤的能力在过去十年中显着增强,但仍然存在 难以诊断转移的起源,而转移的起源仍然是近 90% 癌症相关的原因 在这方面,最近,肿瘤和肿瘤细胞的机械状态发挥了关键作用。 其在肿瘤进展、恶性肿瘤转化和转移中的作用已得到认可,但仍未得到充分利用 由于缺乏合适的测量工具,最近出现了许多微流体变形方法。 出现了,但它们只给出了整体电池机械性能的平均值,而 对于分离细胞核与细胞骨架的贡献很重要,并且它们需要机械刺激来探测 性质,这是有害的,因为细胞对机械刺激有强烈反应,在过去的几年里,我们已经发现了这一点。 一直在开发一种全光学方法来应对这一挑战,称为布里渊显微镜,并且强烈 在肿瘤生物学中建立了它来表征转移级联过程中的细胞力学。 技术本质上在速度上受到限制(~50ms/点),因为它依赖于自发的布里渊相互作用,并且 因此不适合肿瘤细胞的快速筛选/分选。在这里,我们将开发受激布里渊法。 细胞计数法,1) 将速度提高约 100 倍,2) 提供额外的对比机制,例如 基于这一突破,我们将开发和实现微米级分辨率的粘度和质量密度。 使用无标记的弹性模量、粘度和密度验证流式细胞术/细胞分选平台 然后我们将验证我们对转移细胞的机械评估。 微流体测定法评估迁移和增殖,并在小鼠模型中评估细胞的转移能力 体内(目标 2)严格的技术开发、验证、基准测试和现场测试过程。 将产生一个具有前所未有的能力的平台,可以根据细胞的机械特性对细胞进行表征和分类 仪器内的特性与传统流式细胞术兼容,因此可以被广泛采用 该提案的特点是光学技术专家之间的合作。 (UMD)和体外(JHU)和体内(UMB)环境中的癌症转移先驱,具有既定的 卓有成效的合作记录。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konstantinos Konstantopoulos其他文献

Konstantinos Konstantopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Konstantinos Konstantopoulos', 18)}}的其他基金

Stimulated Brillouin Flow Cytometry for biomechanical assessment of metastatic potential
受激布里渊流式细胞仪用于转移潜能生物力学评估
  • 批准号:
    10571938
  • 财政年份:
    2022
  • 资助金额:
    $ 28.44万
  • 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
  • 批准号:
    10374917
  • 财政年份:
    2021
  • 资助金额:
    $ 28.44万
  • 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
  • 批准号:
    10338164
  • 财政年份:
    2021
  • 资助金额:
    $ 28.44万
  • 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
  • 批准号:
    10381200
  • 财政年份:
    2021
  • 资助金额:
    $ 28.44万
  • 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
  • 批准号:
    10559616
  • 财政年份:
    2021
  • 资助金额:
    $ 28.44万
  • 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
  • 批准号:
    10582153
  • 财政年份:
    2021
  • 资助金额:
    $ 28.44万
  • 项目类别:
The interplay of ion transporters and cytoskeleton in breast cancer migration and metastasis
离子转运蛋白和细胞骨架在乳腺癌迁移和转移中的相互作用
  • 批准号:
    10524192
  • 财政年份:
    2021
  • 资助金额:
    $ 28.44万
  • 项目类别:
Viscotaxis: Novel cell migration mechanisms regulated by microenvironmental viscosity
Viscotaxis:微环境粘度调节的新型细胞迁移机制
  • 批准号:
    10622450
  • 财政年份:
    2021
  • 资助金额:
    $ 28.44万
  • 项目类别:
Viscotaxis: Novel cell migration mechanisms regulated by microenvironmental viscosity
Viscotaxis:微环境粘度调节的新型细胞迁移机制
  • 批准号:
    10379292
  • 财政年份:
    2021
  • 资助金额:
    $ 28.44万
  • 项目类别:
Cell mechanobiology in confinement using an integration of bioengineering, materials systems and in vivo models
结合生物工程、材料系统和体内模型的限制细胞力学生物学
  • 批准号:
    10559575
  • 财政年份:
    2021
  • 资助金额:
    $ 28.44万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Gamma-Music Based Intervention for Mild Alzheimer's Disease
基于伽玛音乐的轻度阿尔茨海默病干预
  • 批准号:
    10703506
  • 财政年份:
    2022
  • 资助金额:
    $ 28.44万
  • 项目类别:
Stimulated Brillouin Flow Cytometry for biomechanical assessment of metastatic potential
受激布里渊流式细胞仪用于转移潜能生物力学评估
  • 批准号:
    10571938
  • 财政年份:
    2022
  • 资助金额:
    $ 28.44万
  • 项目类别:
Gamma-Music Based Intervention for Mild Alzheimer's Disease
基于伽玛音乐的轻度阿尔茨海默病干预
  • 批准号:
    10703506
  • 财政年份:
    2022
  • 资助金额:
    $ 28.44万
  • 项目类别:
Gamma-Music Based Intervention for Mild Alzheimer's Disease
基于伽玛音乐的轻度阿尔茨海默病干预
  • 批准号:
    10502921
  • 财政年份:
    2022
  • 资助金额:
    $ 28.44万
  • 项目类别:
Transfontanelle photoacoustic imaging to study pathophysiology of neonatal braininjury
经囟门光声成像研究新生儿脑损伤的病理生理学
  • 批准号:
    10541907
  • 财政年份:
    2021
  • 资助金额:
    $ 28.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了