A DATA SCIENCE APPROACH TO AIR TOXICS AND CHILDREN'S ENVIRONMENTAL HEALTH
空气中毒和儿童环境健康的数据科学方法
基本信息
- 批准号:9761612
- 负责人:
- 金额:$ 24.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-25 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAirAir PollutantsAlgorithmsBig DataBioinformaticsBiological MonitoringBiometryBirthChildChild HealthChildhoodCognitionCognitiveComplex MixturesCoupledDataData LinkagesData ScienceData SetDatabasesDevelopment PlansDistalEducationEnvironmental ExposureEnvironmental HealthEnvironmental MonitoringEpidemiologic MethodsEpidemiologyExposure toFutureGenerationsGeneticGoalsHealthInformation SystemsInvestigationK-Series Research Career ProgramsKnowledgeLearningLinkLiteratureMachine LearningMeasuresMediatingMediationMediator of activation proteinMentorsMethodologyMethodsModelingNational Institute of Environmental Health SciencesNew York CityOntologyOutcomePathway interactionsPopulationPositioning AttributePublic HealthRecordsRegistriesResearchResearch PersonnelResourcesRetrospective cohortRotationSchoolsSelection BiasStandardizationStatistical MethodsTechnical ExpertiseTestingTimeTrainingTreesUrban Populationbasecareercareer developmentclinical Diagnosisearly life exposureepidemiological modelepidemiology studyexperienceexperimental studyforestgenome wide association studyhealth datahigh dimensionalitylearning strategymultidisciplinaryneurodevelopmentpollutantprenatalprenatal exposureresearch and developmentresidenceskillsthird gradeurban children
项目摘要
PROJECT SUMMARY: This proposal aims to characterize the associations between prenatal exposure to
interpretable combinations of air toxics and children’s cognitive health through the efficient use of big public
health data. With guidance from multidisciplinary advisors, the candidate will develop skills in data science,
machine learning and advanced biostatistics to supplement her training in epidemiologic methods. This will
allow her to progress in her career and advance research on combined environmental exposures and
children’s health. Previous research has found associations between prenatal exposure to single air pollutants
and children’s cognitive health but has lacked the ability to investigate combined impacts of multiple pollutants,
including the synergistic/antagonistic interactions between pollutants that have been observed in experimental
studies. Understanding the effects of combined exposures is a strategic goal of the National Institute of
Environmental Health Sciences, and the field of environmental health is transitioning from single-pollutant
approaches to more holistic paradigms, such as the exposome. Identifying associations and interactions within
the context of high-dimensional exposure data presents a computational challenge. Methods from domains
such as data science, including machine learning methods, can be incorporated into the epidemiologic toolbox
for addressing environmental mixtures and multiple exposures. The goal of this Career Development Award is
to advance the candidate into an independent research career at the intersection of big data science and
children’s environmental health. Through formal coursework, directed learning and field rotations, the
candidate will gain skills in data science, machine learning and advanced biostatistics. Mentors, advisors and
consultants have been selected for their complementary expertise, relevant research experience and
mentoring abilities. The proposed research will leverage the skills gained from the training plan and apply them
to characterize associations between prenatal exposure to interpretable combinations of air toxics and 3rd
grade standardized test scores, a school-based measure of cognitive outcomes. Residence at birth will be
used to link data on air toxics, a subset of air pollutants, to an administrative data linkage of public health
registries and education data for approximately 220,000 children born in New York City from 1994-1998. The
candidate will develop and validate a two-stage approach of hypotheses generation followed by targeted
analyses in order to identify combinations of air toxics associated with children’s test scores within the context
of high-dimensional exposure data (Aim 1). Targeted analyses using well-established epidemiologic methods
for effect estimation and assessment of interaction between air toxics will be performed. (Aim2) Potential
mediators of the relationship between air toxics and test scores can then be identified using statistical
mediation and data science approaches. (Aim 3) Completion of these aims will uniquely position the candidate
to conduct future research on combined environmental exposures and children’s health.
项目摘要:本提案旨在描述产前暴露于
通过有效利用大型公共场所,可解释空气毒物与儿童认知健康的组合
在多学科顾问的指导下,候选人将培养数据科学方面的技能,
机器学习和先进的生物统计学将补充她在流行病学方法方面的培训。
让她能够在职业生涯中取得进步并推进对综合环境暴露和
先前的研究发现,产前接触单一空气污染物之间存在关联。
和儿童的认知健康,但缺乏调查多种污染物综合影响的能力,
包括在实验中观察到的污染物之间的协同/拮抗相互作用
了解暴露的综合影响是美国国立卫生研究院的一个战略目标。
环境健康科学,环境健康领域正在从单一污染物转向
更全面的范式的方法,例如识别暴露组中的关联和相互作用。
高维暴露数据的背景提出了来自领域的计算挑战。
例如数据科学,包括机器学习方法,可以纳入流行病学工具箱
该职业发展奖的目标是解决环境混合物和多重暴露问题。
推动候选人进入大数据科学和大数据科学交叉领域的独立研究生涯
通过正式课程、定向学习和实地轮换,
候选人将获得数据科学、机器学习和高级生物统计学方面的技能。
顾问的选择是基于他们互补的专业知识、相关的研究经验和
拟议的研究将利用从培训计划中获得的技能并应用它们。
描述产前暴露于可解释的空气毒物组合与第三种物质之间的关联
年级标准化考试成绩是一种以学校为基础的认知结果衡量标准。
用于将空气毒物(空气污染物的一个子集)数据与公共卫生管理数据链接起来
1994 年至 1998 年间纽约市出生的约 220,000 名儿童的登记和教育数据。
候选人将开发和验证假设生成的两阶段方法,然后是有针对性的
进行分析,以确定与儿童测试分数相关的空气毒物组合
使用成熟的流行病学方法进行有针对性的分析。
将进行空气毒物之间相互作用的影响估计和评估(目标2)潜力。
然后可以使用统计数据来确定空气毒物与测试分数之间关系的中介因素
(目标 3)完成这些目标将使候选人处于独特的地位。
未来对综合环境暴露和儿童健康进行研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeanette A Stingone其他文献
Jeanette A Stingone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeanette A Stingone', 18)}}的其他基金
A DATA SCIENCE APPROACH TO AIR TOXICS AND CHILDREN'S ENVIRONMENTAL HEALTH
空气中毒和儿童环境健康的数据科学方法
- 批准号:
9791316 - 财政年份:2018
- 资助金额:
$ 24.75万 - 项目类别:
A Data Science Approach to Air Toxics and Children's Environmental Health
空气毒物和儿童环境健康的数据科学方法
- 批准号:
9313526 - 财政年份:2017
- 资助金额:
$ 24.75万 - 项目类别:
相似国自然基金
中国典型大城市交通源氨排放特征及空气质量影响的高分辨率解析
- 批准号:42305189
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低气压对长空气间隙正先导发展速度的影响规律及其物理机理
- 批准号:52377146
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
聚合物纤维膜的声至内源摩擦自充电效应及对空气过滤性能的影响
- 批准号:52373103
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
我国东部土壤源氮氧化物排放机理与空气质量影响模拟评估
- 批准号:42371080
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
泵站进水池涌浪和空气吸入涡影响下轴流泵瞬态过程水力失稳机理研究
- 批准号:52379086
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
- 批准号:
10677271 - 财政年份:2023
- 资助金额:
$ 24.75万 - 项目类别:
Role of serotonin brain circuit in the developmental emergence ofinnate fear
血清素脑回路在先天恐惧的发展中的作用
- 批准号:
10664638 - 财政年份:2023
- 资助金额:
$ 24.75万 - 项目类别:
Probing immunovascular mechanobiology in pneumonia-associated acute lung injury at the single capillary level
在单毛细血管水平探讨肺炎相关急性肺损伤的免疫血管力学生物学
- 批准号:
10679944 - 财政年份:2023
- 资助金额:
$ 24.75万 - 项目类别:
Effects of State Preemption of Local Tobacco Control Legislation on Disparities in Tobacco Use, Exposure and Retail
国家抢先实施地方烟草控制立法对烟草使用、接触和零售差异的影响
- 批准号:
10681733 - 财政年份:2023
- 资助金额:
$ 24.75万 - 项目类别:
Evaluating the impacts of sea level rise on migration and wellbeing in coastal communities
评估海平面上升对沿海社区移民和福祉的影响
- 批准号:
10723570 - 财政年份:2023
- 资助金额:
$ 24.75万 - 项目类别: