Neurocomputational Mechanisms for Addiction Heterogeneity, Impulsivity and Perseverance
成瘾异质性、冲动性和毅力的神经计算机制
基本信息
- 批准号:9809076
- 负责人:
- 金额:$ 25.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgeAmericanAnimalsAreaBehaviorBehavior ControlBehavioralBrainCause of DeathConsumptionCorpus striatum structureDataDecision MakingDevelopmentDiagnosisDimensionsDiseaseDopamineDorsalDrug AddictionDrug ExposureDrug usageEducationEquilibriumExhibitsFeedbackFunctional Magnetic Resonance ImagingGenderGoalsHabitsHeterogeneityHumanImpulsive BehaviorImpulsivityIndividualIndividual DifferencesKnowledgeLearningLiteratureMeasuresModelingMotorNeurocognitiveNeurotransmittersNicotineNicotine DependenceNicotine Use DisorderOutcomePharmaceutical PreparationsPhasePhenotypePhysiologicalPlayPrefrontal CortexProcessPsychiatryResearchResponse to stimulus physiologyRoleSeveritiesSignal TransductionSubstance Use DisorderSymptomsSystemTechniquesTestingTobacco smoking behaviorVentral StriatumWorkaddictioncausal modelcigarette smokeclinical heterogeneitycohortcomputer frameworkgoal oriented behaviorindexingindividualized medicineneuromechanismnicotine usenon-smokingnovelpredictive modelingrelating to nervous systemresponsesimulationsymptomatologytheories
项目摘要
Project Summary
Studies in substance use disorders (SUDs) have identified a profound inter-subject variability, where a wide
variety of multifaceted, dissociable behavioral phenotypes are correlated with addiction development and
symptomatology. Even apparently incompatible behavioral expressions, such as impulsivity and inelasticity
or perseverance, have been found to co-occur in SUDs and to signal similar addiction vulnerabilities.
However, few neural or computational mechanisms have been described so far to account for such
seemingly contradicting findings and individual differences, thus hindering the development of
individualized diagnosis and treatment. The overarching goal of this project is to validate a new model of
addiction using Nicotine Use Disorder (NUD) as test case. We propose to expand on previous theories to
provide a more comprehensive neuro-computational framework of addiction that includes phenotypic
variability and co-occurrence of impulsivity and perseverance, characterized in terms of effective
connectivity in cortico-striatal circuits. The scientific premise for this project is grounded in decades of
human and non-human animal work which have demonstrated the roles played in addiction by the ventral
and dorsal corticostriatal systems, respectively responsible for goal oriented and habitual behavior. The
simulation of the neural dynamics in these two circuits has allowed our model to describe addiction on two
independent dimensions. On a first dimension, addictive drugs such as nicotine result in increased circuit
gain and state transition stability in both ventral and dorsal cortico-striatal systems, amplifying preliminary
evidence (impulsivity) and making choice selections become inelastic due to a feedback effect
(perseverance). On a second dimension, which is not necessarily affected by drug exposure, our models
converge in suggesting that this gain-related over-stability of both cortico-striatal circuits is aggravated by
the presence of a “dominance” of either of the two circuit over the other. In aim 1, we will validate the model
prediction that high circuit gain predicts greater behavioral impulsivity and perseverance. In aim 2 we will
validate the model prediction that the balance between the two cortico-striatal circuits predicts drug use
severity. Circuit gain and circuit balance will be tested in NUD individuals (n=32) and healthy controls
(n=32), tasked with decision-making tasks. Circuit gain will be measured in terms of effective connectivity
between cortical and striatal areas, within each circuit, and estimated with the use of Dynamic Causal
Modelling (DCM). Circuit balance will be estimated using DCM for the ventro-dorsal effective connectivity,
to establish dominance on a gradient. This proof-of-concept project can provide a new computational
framework for drug addiction, and a quantitative model to characterize clinical heterogeneity, eventually
informing individualized treatments.
项目概要
对物质使用障碍(SUD)的研究已经发现了一种深刻的受试者间差异,其中广泛的
各种多方面的、可分离的行为表型与成瘾的发展和
甚至明显不相容的行为表现,例如冲动和缺乏弹性。
或毅力,已被发现在 SUD 中同时出现,并表明类似的成瘾脆弱性。
然而,到目前为止,很少有神经或计算机制被描述来解释这种情况
看似矛盾的研究结果和个体差异,从而阻碍了发展
该项目的总体目标是验证一种新的个体化诊断和治疗模型。
使用尼古丁使用障碍(NUD)作为测试案例,我们建议将以前的理论扩展到。
提供更全面的成瘾神经计算框架,包括表型
冲动性和毅力的可变性和共现性,以有效性为特征
该项目的科学前提是基于数十年的经验。
人类和非人类动物的工作已经证明了腹侧在成瘾中所起的作用
和背侧皮质纹状体系统,分别负责目标导向和习惯行为。
对这两个回路中的神经动力学的模拟使我们的模型能够描述两个方面的成瘾
在第一个维度上,尼古丁等成瘾药物会导致回路增加。
腹侧和背侧皮质纹状体系统的增益和状态转换稳定性,放大了初步
由于反馈效应,证据(冲动)和选择变得缺乏弹性
(毅力)在第二个维度上,我们的模型不一定受到药物暴露的影响。
集中表明,两个皮质纹状体回路的这种与增益相关的过度稳定性因
在目标 1 中,两个电路中的一个电路相对于另一个电路存在“优势”。
在目标 2 中,我们预测高电路增益预示着更大的行为冲动和毅力。
验证模型预测,即两个皮质纹状体回路之间的平衡可以预测药物使用
电路增益和电路平衡将在 NUD 个体 (n=32) 和健康对照中进行测试。
(n=32),负责决策任务的电路增益将根据有效连接来衡量。
每个回路内的皮质和纹状体区域之间,并使用动态因果关系进行估计
建模(DCM)将使用 DCM 来估计腹背有效连接,
在梯度上建立主导地位这个概念验证项目可以提供一种新的计算方法。
药物成瘾的框架,以及表征临床异质性的定量模型,最终
告知个体化治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaosi Gu其他文献
Xiaosi Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaosi Gu', 18)}}的其他基金
Neural, computational and behavioral characterization of dynamic social behavior in borderline and avoidant personality disorder
边缘型和回避型人格障碍动态社会行为的神经、计算和行为特征
- 批准号:
10400100 - 财政年份:2021
- 资助金额:
$ 25.43万 - 项目类别:
Neural, computational and behavioral characterization of dynamic social behavior in borderline and avoidant personality disorder
边缘型和回避型人格障碍动态社会行为的神经、计算和行为特征
- 批准号:
10579939 - 财政年份:2021
- 资助金额:
$ 25.43万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10640947 - 财政年份:2020
- 资助金额:
$ 25.43万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10059060 - 财政年份:2020
- 资助金额:
$ 25.43万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10428547 - 财政年份:2020
- 资助金额:
$ 25.43万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10227238 - 财政年份:2020
- 资助金额:
$ 25.43万 - 项目类别:
Neurocomputational Mechanisms for Addiction Heterogeneity, Impulsivity and Perseverance
成瘾异质性、冲动性和毅力的神经计算机制
- 批准号:
9980853 - 财政年份:2019
- 资助金额:
$ 25.43万 - 项目类别:
Computational and Neural Modeling of Cue Reactivity in Addiction
成瘾中提示反应的计算和神经建模
- 批准号:
10434013 - 财政年份:2018
- 资助金额:
$ 25.43万 - 项目类别:
Computational and Neural Modeling of Cue Reactivity in Addiction
成瘾中提示反应的计算和神经建模
- 批准号:
10400477 - 财政年份:2018
- 资助金额:
$ 25.43万 - 项目类别:
Computational and Neural Modeling of Cue Reactivity in Addiction
成瘾中提示反应的计算和神经建模
- 批准号:
9769690 - 财政年份:2018
- 资助金额:
$ 25.43万 - 项目类别:
相似国自然基金
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAS介导OPN4-PLCβ4-TRPC6/7通路调节自主感光视网膜神经节细胞在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 25.43万 - 项目类别:
Stopping Hydroxychloroquine In Elderly Lupus Disease (SHIELD)
停止使用羟氯喹治疗老年狼疮病 (SHIELD)
- 批准号:
10594743 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别:
Identifying and testing a tailored strategy to achieve equity in blood pressure control in PACT
确定并测试量身定制的策略,以在 PACT 中实现血压控制的公平性
- 批准号:
10538513 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别:
Proteomic and epigenetic alterations associated with plant-based diets and CVD
与植物性饮食和心血管疾病相关的蛋白质组学和表观遗传改变
- 批准号:
10643149 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别:
UNderstanding the Delivery of Low-Value CAre To CHildren and the Barriers to De-Implementation (UN-LATCH)
了解向儿童提供低价值护理以及取消实施的障碍 (UN-LATCH)
- 批准号:
10649811 - 财政年份:2023
- 资助金额:
$ 25.43万 - 项目类别: