Computational and Neural Modeling of Cue Reactivity in Addiction
成瘾中提示反应的计算和神经建模
基本信息
- 批准号:10434013
- 负责人:
- 金额:$ 59.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AbstinenceAddressAdultAffectAlcoholsAmericanAnimal ModelBayesian ModelingBehaviorBig DataBinge EatingBrainBrain imagingBrain regionCannabisChildCognitionCommon CoreComputer AnalysisComputer ModelsComputing MethodologiesCorpus striatum structureCouplingCuesDataData SetDopamineDrug AddictionDrug abuseDrug usageFailureFoodFunctional Magnetic Resonance ImagingGoalsHumanImaging DeviceIncubatedIndividualInsula of ReilLearningMethodsMidbrain structureModalityModelingNatureNeurobiologyNicotineObesityPathologyPerceptionPharmaceutical PreparationsPhenotypePsychiatryPublic HealthResearchResistanceRewardsRoleSample SizeSeveritiesSubgroupSubstance Use DisorderSubstantia nigra structureSymptomsTimeUnited StatesUnited States National Institutes of HealthUpdateVentral Tegmental AreaWorkaddictionbasebench to bedsidebinge drinkercausal modelcravingcue reactivitydrug cravingfood cravinghuman modelimaging studyinterestmarijuana usemarijuana usermultilevel analysisneural circuitneural modelneuroimagingnovelobese personrelapse predictionrelating to nervous systemresponsereward processingsubstance usetobacco smokers
项目摘要
Abstract
Substance use disorders (SUD) and obesity are both major public health concerns in the United States, with
an estimated 20.8 million Americans struggling with at least one SUD in 2015 and 78.6 million adults and 12.7
million children who are obese. Cue-elicited craving is a central symptom of both drug addiction and binge
eating and a strong predictor of relapse. Compared to other SUD symptoms, craving is also much more
resistant to treatment. Unfortunately, our understanding of the neurobiological basis of cue-induced craving is
still limited, especially compared to the wealth of existing human neuroimaging data. This is partially due to the
lack of big data collectives (i.e. fMRI studies have mostly been conducted in isolation from each other) as well
as the scarcity of model-based computational analysis in neuroimaging studies on addiction and obesity. The
overarching goal of this project is to use multi-level, model-based computational methods to re-analyze six
existing fMRI datasets that examine cue reactivity and craving across a total of 954 individuals with substance
use or binge eating (59 tobacco smokers, 254 cannabis users, 598 binge drinkers, and 43 binge eating adults).
We will address three timely aims using novel computational modeling methods: 1) conduct Bayesian model-
based analyses to examine the common and distinct computational mechanisms of drug and food craving
across different groups; 2) use dynamic causal modeling to quantify directed coupling between neural regions
involved in cue reactivity shared by or unique to different substance using and binge eating groups; 3) explore
how models of cue-elicited craving are modulated by the severity of substance use and binge eating. Findings
from this project will greatly enhance our understanding of the neural and computational mechanisms
underlying craving and cue reactivity in drug addiction and binge eating. The implication of these results could
be far-reaching, because 1) craving is a common and core phenotype across different substance use and
binge eating groups; 2) these advanced modeling methods could be applied to many other pathologies related
to dysfunctional craving and reward processing; and 3) how these mechanisms differ between more severe
(e.g. SUD) and less severe (e.g. non-SUD) individuals could provide mechanisms that might protect an
individual from developing SUD.
抽象的
药物滥用障碍 (SUD) 和肥胖都是美国主要的公共卫生问题,
据估计,2015 年有 2080 万美国人至少患有一种 SUD,其中 7860 万成年人和 12.7
百万儿童肥胖。提示引发的渴望是毒瘾和暴饮暴食的核心症状
饮食和复发的强烈预测因素。与其他 SUD 症状相比,渴望也更多
对治疗有抵抗力。不幸的是,我们对提示诱发渴望的神经生物学基础的理解是
仍然有限,特别是与现有的丰富的人类神经影像数据相比。这部分是由于
缺乏大数据集体(即功能磁共振成像研究大多是相互独立进行的)
成瘾和肥胖的神经影像学研究中缺乏基于模型的计算分析。这
该项目的总体目标是使用多层次、基于模型的计算方法来重新分析六种
现有的功能磁共振成像数据集检查了总共 954 名个体的线索反应性和对物质的渴望
使用或暴食(59 名吸烟者、254 名大麻使用者、598 名暴饮者和 43 名暴食成年人)。
我们将使用新颖的计算建模方法解决三个及时的目标:1)进行贝叶斯模型 -
基于分析来检查药物和食物渴望的常见和独特的计算机制
跨不同群体; 2)使用动态因果模型来量化神经区域之间的定向耦合
涉及不同物质使用和暴食群体共有或独特的提示反应; 3)探索
物质使用和暴饮暴食的严重程度如何调节线索引发的渴望模型。发现
这个项目将极大地增强我们对神经和计算机制的理解
药物成瘾和暴饮暴食的潜在渴望和提示反应。这些结果的意义可能是
影响深远,因为 1) 渴望是不同物质使用和使用过程中常见的核心表型
暴食人群; 2)这些先进的建模方法可以应用于许多其他相关的病理学
渴望和奖励处理功能失调; 3)这些机制在更严重的情况下有何不同
(例如 SUD)和不太严重(例如非 SUD)的个人可以提供可能保护
来自开发 SUD 的个人。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Addiction beyond pharmacological effects: The role of environment complexity and bounded rationality.
超越药理作用的成瘾:环境复杂性和有限理性的作用。
- DOI:
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Ognibene, Dimitri;Fiore, Vincenzo G;Gu, Xiaosi
- 通讯作者:Gu, Xiaosi
An Interpretable and Predictive Connectivity-Based Neural Signature for Chronic Cannabis Use.
针对慢性大麻使用的可解释和可预测的基于连接的神经特征。
- DOI:
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Kulkarni, Kaustubh R;Schafer, Matthew;Berner, Laura A;Fiore, Vincenzo G;Heflin, Matt;Hutchison, Kent;Calhoun, Vince;Filbey, Francesca;Pandey, Gaurav;Schiller, Daniela;Gu, Xiaosi
- 通讯作者:Gu, Xiaosi
Aberrant neural computation of social controllability in nicotine-dependent humans.
尼古丁依赖人类社会可控性的异常神经计算。
- DOI:
- 发表时间:2024-01-24
- 期刊:
- 影响因子:0
- 作者:Gu, Xiaosi;McLaughlin, Caroline;Fu, Qixiu;Na, Soojung;Heflin, Matthew;Fiore, Vincenzo
- 通讯作者:Fiore, Vincenzo
Anterior insular cortex plays a critical role in interoceptive attention.
前岛叶皮质在内感受注意力中起着至关重要的作用。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:7.7
- 作者:Wang, Xingchao;Wu, Qiong;Egan, Laura;Gu, Xiaosi;Liu, Pinan;Gu, Hong;Yang, Yihong;Luo, Jing;Wu, Yanhong;Gao, Zhixian;Fan, Jin
- 通讯作者:Fan, Jin
Modeling subjective belief states in computational psychiatry: interoceptive inference as a candidate framework.
计算精神病学中的主观信念状态建模:内感受推理作为候选框架。
- DOI:
- 发表时间:2019-08
- 期刊:
- 影响因子:3.4
- 作者:Gu, Xiaosi;FitzGerald, Thomas H B;Friston, Karl J
- 通讯作者:Friston, Karl J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaosi Gu其他文献
Xiaosi Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaosi Gu', 18)}}的其他基金
Neural, computational and behavioral characterization of dynamic social behavior in borderline and avoidant personality disorder
边缘型和回避型人格障碍动态社会行为的神经、计算和行为特征
- 批准号:
10400100 - 财政年份:2021
- 资助金额:
$ 59.27万 - 项目类别:
Neural, computational and behavioral characterization of dynamic social behavior in borderline and avoidant personality disorder
边缘型和回避型人格障碍动态社会行为的神经、计算和行为特征
- 批准号:
10579939 - 财政年份:2021
- 资助金额:
$ 59.27万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10640947 - 财政年份:2020
- 资助金额:
$ 59.27万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10059060 - 财政年份:2020
- 资助金额:
$ 59.27万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10428547 - 财政年份:2020
- 资助金额:
$ 59.27万 - 项目类别:
Computational and electrochemical substrates of social decision-making in humans
人类社会决策的计算和电化学基础
- 批准号:
10227238 - 财政年份:2020
- 资助金额:
$ 59.27万 - 项目类别:
Neurocomputational Mechanisms for Addiction Heterogeneity, Impulsivity and Perseverance
成瘾异质性、冲动性和毅力的神经计算机制
- 批准号:
9809076 - 财政年份:2019
- 资助金额:
$ 59.27万 - 项目类别:
Neurocomputational Mechanisms for Addiction Heterogeneity, Impulsivity and Perseverance
成瘾异质性、冲动性和毅力的神经计算机制
- 批准号:
9980853 - 财政年份:2019
- 资助金额:
$ 59.27万 - 项目类别:
Computational and Neural Modeling of Cue Reactivity in Addiction
成瘾中提示反应的计算和神经建模
- 批准号:
10400477 - 财政年份:2018
- 资助金额:
$ 59.27万 - 项目类别:
Computational and Neural Modeling of Cue Reactivity in Addiction
成瘾中提示反应的计算和神经建模
- 批准号:
9769690 - 财政年份:2018
- 资助金额:
$ 59.27万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Longitudinal Modeling of Pro-Inflammatory Cytokines, Hazardous Alcohol Use, and Cerebral Metabolites as Predictors of Neurocognitive Change in People with HIV
促炎细胞因子、有害酒精使用和脑代谢物的纵向建模作为 HIV 感染者神经认知变化的预测因子
- 批准号:
10838849 - 财政年份:2024
- 资助金额:
$ 59.27万 - 项目类别:
Assessing the real-world impact of a low nicotine product standard for smoked tobacco in New Zealand
评估新西兰低尼古丁产品标准对吸食烟草的现实影响
- 批准号:
10665851 - 财政年份:2023
- 资助金额:
$ 59.27万 - 项目类别:
Effects of Nicotine Concentration Levels in E-cigarettes on Biomarkers of Exposure to Toxicants and Tobacco Use Behaviors
电子烟中尼古丁浓度水平对有毒物质暴露和烟草使用行为生物标志物的影响
- 批准号:
10678555 - 财政年份:2023
- 资助金额:
$ 59.27万 - 项目类别:
Randomized clinical trial to test the efficacy of a smartphone app for smoking cessation for nondaily smokers
随机临床试验,测试智能手机应用程序对非日常吸烟者戒烟的功效
- 批准号:
10715401 - 财政年份:2023
- 资助金额:
$ 59.27万 - 项目类别:
3/4-American Consortium of Early Liver Transplantation-Prospective Alcohol-associated liver disease Cohort Evaluation (ACCELERATE-PACE)
3/4-美国早期肝移植联盟-前瞻性酒精相关性肝病队列评估(ACCELERATE-PACE)
- 批准号:
10711001 - 财政年份:2023
- 资助金额:
$ 59.27万 - 项目类别: