Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
基本信息
- 批准号:10563598
- 负责人:
- 金额:$ 54.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsBayesian MethodBayesian ModelingBayesian learningBehavioral MechanismsBehavioral trialBlood PressureBody WeightCardiovascular systemCaringClinicalClinical ResearchClinical TrialsCluster randomized trialCodeCollaborationsComparative StudyComplexComputer softwareDataData ElementDiabetes MellitusElectronic Health RecordEnsureEthicsExhibitsFrequenciesFundingFutureHandHeterogeneityIndividualInterventionKenyaLiteratureMalignant NeoplasmsMediatingMediationMediatorMental disordersMethodologyMethodsModelingNational Heart, Lung, and Blood InstituteObesityObservational StudyOutcomePaperPharmaceutical PreparationsPharmacoepidemiologyProcessPropertyProtocols documentationPublic HealthRecording of previous eventsResearchResearch PersonnelRiskSamplingScienceStructureTimeUncertaintyWeightWeight maintenance regimenWorkbariatric surgerybehavior changebehavioral studycardiovascular healthcostdata complexitydata modelingdiabetogenicflexibilityhypertension treatmentimprovedinterestlarge datasetslongitudinal, prospective studymachine learning methodnovelnovel strategiesprimary outcomeprospectiverandomized trialsecondary outcometoolusabilityvirtual
项目摘要
Project Summary
This proposal will develop Bayesian machine learning approaches via Bayesian nonparametrics (BNP) to handle
nonignorable missingness (in outcomes and covariates) and conduct causal inference for electronic health records
(EHRs), to address missingness in multivariate longitudinal data, and for causal mediation problems. Missing
data remains a problem in clinical studies and in particular, for studies using EHRs. In clinical studies, more
e↵ort is spent to try to minimize the amount of missingness, but it still remains a problem and missingness is
a constant issue (and less controllable) in studies based on EHRs. In addition, there has been limited work on
the use of auxiliary information in EHRs that can enhance the ability to deal with missing data. Approaches for
missingness in multivariate longitudinal data is underdeveloped and relevant across many clinical trials settings
from cost e↵ectiveness analysis to incomplete time-varying auxiliary covariates (or confounders) to causal mediation
to multiple outcomes of interest. The mechanisms of treatment e↵ectiveness are of particular interest in behavioral
trials. Specifically, how do di↵erent processes mediate the e↵ect of an intervention? This can facilitate constructing
future interventions. However, determining the causal e↵ect of such 'mediators' on outcomes is di"cult. We will
develop new approaches to identify these e↵ects in the complex setting of cluster randomized trials for which
little work has been done. For all these settings, a Bayesian approach is ideal as it allows one to appropriately
characterize uncertainty about unverifiable assumptions (which are present in all these problems) and allows the
flexibility of Bayesian nonparametric models. MCMC algorithms for BNP can sometimes converge slowly and can
be untenable for large n. We will extend existing approaches to address both these complications which will be
important for all the applications considered and in general, given the increasing size and complexity of data.
The methods are motivated by several NHLBI funded studies, whose PI's are co-investigators on this proposal,
and will be developed to help answer numerous important clinical questions including the mechanisms of behavior
change in weight management and the impact of linkage (and engagement) to care on treatment e↵ectiveness
for blood pressure outcomes. The methods will also help us evaluate potentially synergistic e↵ects when drugs
with potential diabetogenic e↵ects are used concomitantly and whether the impact on cancer outcomes varies by
di↵erent bariatric surgeries.
The history of the the collaborations among the entire study team will help produce the best science and
facilitate dissemination of our methodological and clinical findings. We will disseminate code for these methods
(via the PI's github page and software papers) to ensure the methods will be readily usable by investigators
involved in cardiovascular, obesity, diabetes, and cancer studies.
项目摘要
该提案将通过贝叶斯非参数(BNP)开发贝叶斯机器学习方法来处理
不可点击的丢失(在结果和协变量中)并为电子健康记录进行因果推断
(EHR),解决多元纵向数据中的缺失以及因果中介问题。丢失的
在临床研究,尤其是使用EHR的研究中,数据仍然是一个问题。在临床研究中,更多
e↵Ort用于试图最大程度地减少失踪量,但仍然是一个问题,遗失是
在基于EHR的研究中,恒定的问题(较少受控)。此外,工作有限
在EHR中使用辅助信息可以增强处理丢失数据的能力。方法
在许多临床试验环境中
从成本e显分析到不完整的时变辅助协变量(或混杂因素)到因果关系
有多种感兴趣的结果。治疗的机制在行为方面特别感兴趣
试验。特定的,如何介导干预措施的e介导?这可以促进构建
未来的干预措施。但是,确定这种“调解人”的因果关系是“邪教”。我们将
开发新的方法来识别这些e↵在群集随机试验的复杂环境中
很少的工作完成了。对于所有这些设置,贝叶斯的方法是理想的选择,因为它可以适当
表征有关无法验证的假设(所有这些问题中存在)的不确定性,并允许
贝叶斯非参数模型的灵活性。 BNP的MCMC算法有时会缓慢收敛,并且可以
对于大n来说是站不住脚的。我们将扩展现有的方法来解决这两种并发症,这将是
考虑到数据的规模和复杂性的增加,对于所有考虑的应用程序和通常的应用程序都很重要。
这些方法是由几项NHLBI资助的研究激励的,其PI是该提案的共同研究者,
并将开发以帮助回答许多重要的临床问题,包括行为机制
体重管理的变化以及连锁(和参与度)对治疗的影响
用于血压结果。这些方法还将帮助我们评估药物时潜在的协同作用。
伴随潜在的糖尿病生成e↵Acnects以及对癌症结果的影响是否会产生
不同的减肥手术。
整个研究团队中合作的历史将有助于生产最好的科学和
促进我们的方法论和临床发现。我们将为这些方法传播代码
(通过PI的GitHub页面和软件论文)确保调查人员很容易使用这些方法
包括在心血管,肥胖,糖尿病和癌症研究中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael J Daniels其他文献
An Exploration of Fixed and Random Effects Selection for Longitu- Dinal Binary Outcomes in the Presence of Non-ignorable Dropout 3.2 Variable Selection in Missing Data Mechanism 4 Simulation Studies
不可忽略丢失情况下纵向二元结果的固定和随机效应选择的探索 3.2 缺失数据机制中的变量选择 4 模拟研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ning Li;Michael J Daniels;Gang Li;R. Elashoff - 通讯作者:
R. Elashoff
Effects of an Intervention to Increase Bed Alarm Use to Prevent Falls in Hospitalized Patients
增加床报警器使用以预防住院患者跌倒的干预措施的效果
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:39.2
- 作者:
R. Shorr;A. Chandler;L. Mion;T. Waters;Minzhao Liu;Michael J Daniels;L. Kessler;Stephen T. Miller - 通讯作者:
Stephen T. Miller
Dietary assessment and estimation of intakedensitiesMichael
膳食评估和摄入密度估计Michael
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Michael J Daniels;A. Carriquiry - 通讯作者:
A. Carriquiry
Michael J Daniels的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael J Daniels', 18)}}的其他基金
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
- 批准号:
10618846 - 财政年份:2021
- 资助金额:
$ 54.83万 - 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
- 批准号:
10279399 - 财政年份:2021
- 资助金额:
$ 54.83万 - 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
- 批准号:
10430254 - 财政年份:2021
- 资助金额:
$ 54.83万 - 项目类别:
BAYESIAN APPROACHES FOR MISSINGNESS AND CAUSALITY IN CANCER AND BEHAVIOR STUDIES
癌症和行为研究中缺失和因果关系的贝叶斯方法
- 批准号:
9623592 - 财政年份:2018
- 资助金额:
$ 54.83万 - 项目类别:
BAYESIAN APPROACHES FOR MISSINGNESS AND CAUSALITY IN CANCER AND BEHAVIOR STUDIES
癌症和行为研究中缺失和因果关系的贝叶斯方法
- 批准号:
9437722 - 财政年份:2018
- 资助金额:
$ 54.83万 - 项目类别:
PREDOCTORAL TRAINING IN BIOMEDICAL BIG DATA SCIENCE
生物医学大数据科学博士前培训
- 批准号:
9116413 - 财政年份:2016
- 资助金额:
$ 54.83万 - 项目类别:
Bayesian approaches for missingness and causality in cancer and behavior studies
癌症和行为研究中缺失和因果关系的贝叶斯方法
- 批准号:
8672913 - 财政年份:2014
- 资助金额:
$ 54.83万 - 项目类别:
Bayesian approaches for missingness and causality in cancer and behavior studies
癌症和行为研究中缺失和因果关系的贝叶斯方法
- 批准号:
9041551 - 财政年份:2014
- 资助金额:
$ 54.83万 - 项目类别:
RESOURCE CORE 3: BIOSTATISTICS AND DATA MANAGEMENT CORE
资源核心 3:生物统计学和数据管理核心
- 批准号:
8206035 - 财政年份:2007
- 资助金额:
$ 54.83万 - 项目类别:
COVARIANCE ESTIMATION FOR LONGITUDINAL CANCER DATA
纵向癌症数据的协方差估计
- 批准号:
6288245 - 财政年份:2001
- 资助金额:
$ 54.83万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
A mega-analysis framework for delineating autism neurosubtypes
描述自闭症神经亚型的大型分析框架
- 批准号:
10681965 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别: