Bayesian approaches for missingness and causality in cancer and behavior studies
癌症和行为研究中缺失和因果关系的贝叶斯方法
基本信息
- 批准号:9041551
- 负责人:
- 金额:$ 12.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-18 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressBayesian AnalysisBayesian MethodBehavior TherapyBehavioralBehavioral trialBiomedical ResearchCationsCessation of lifeClinicalClinical ResearchClinical TrialsCodeCollaborationsCollectionComplexDataDevelopmentEnsureEquationEtiologyEventFutureGrantHealthIndividualInterventionJointsLiteratureMalignant NeoplasmsMalignant neoplasm of brainManuscriptsMediatingMediationMediator of activation proteinMethodologyMethodsModelingOutcomeProcessPublic HealthPublicationsRecording of previous eventsReportingResearch PersonnelRiskScienceTimeTranslationsTreatment EffectivenessUncertaintyUnited States National Academy of SciencesWeight maintenance regimenWorkWritingbasebehavior changebehavioral studycomputer codeconditioningdirect applicationexperiencefollow-upimprovedinnovationinterestintervention effectnovelnovel strategiessemiparametricsmoking cessationsymposiumtreatment effectweb pageweb site
项目摘要
DESCRIPTION (provided by applicant): This proposal will develop novel Bayesian approaches to handle missingness and conduct causal inference for important problems in biomedical research with particular relevance to cancer and behavioral studies. Missing data is a major problem in clinical studies. Of late, more e ort is spent to try to minimize the amount of missingness, but it remains a problem. We will address several pressing complications in the analysis of incomplete data in clinical settings as documented in a recent National Academies of Science report, including assessing model t to the observed data, developing Bayesian approaches for auxiliary covariates, and nonparametric modeling of nonignorable missingness. The mechanisms of treatment effectiveness are of particular interest in behavioral trials. Specifically, how do different processes mediate the effect of an intervention? This can facilitate
constructing future interventions. However, determining the causal effect of such 'mediators' on the outcomes is difficult. We will develop new approaches to identify these effects in complex settings with multiple mediators and longitudinal mediators for which little work has been done. Another important question is how to de ne and identify causal effects of interventions on outcomes in the setting of semi-competing risks. Semi-competing risks occur in studies where a progression endpoint may be pre-empted by death or censored due to loss to follow-up or study termination. Subjects who experience a progression event are also followed for survival, which may be censored. Data of this form has been termed semi-competing risks data. This paradigm is particularly relevant to certain brain cancer trials, where the semi-competing risks are death and cerebellar progression. For all these settings, a Bayesian approach is ideal as it allows one to appropriately characterize uncertainty about invariable assumptions (which are present in all these problems). The methods developed here will help answer numerous important clinical questions including the mechanisms of behavior change, both in weight management and smoking cessation, via the ability to appropriately assess mediation, and the joint causal effect of treatment on time to death and cerebellar progression in brain cancer. We will disseminate code for these methods (via the PI's webpage) to ensure the methods will be readily usable by investigators in their own studies. The history of the PI's collaboration with the PI's of the individual clinical studies and the statistician co- investigators will help the team produce the best science and facilitate dissemination of our clinical findings and new methods to the appropriate audience via both subject matter publications and presentations at relevant conferences.
描述(由申请人提供):该提案将开发出新颖的贝叶斯方法来处理失踪性并为生物医学研究中的重要问题进行因果推断,并与癌症和行为研究特别相关。缺少数据是临床研究中的主要问题。最近,花费了更多的时间来尝试最大程度地减少失踪程度,但仍然是一个问题。我们将在分析临床环境中不完整数据的分析中,如最近的一份国家科学报告中所记录的,包括评估观察到的数据的模型T,开发辅助协变量的贝叶斯方法以及对不可差异遗失的非参数建模。在行为试验中,治疗有效性的机制特别感兴趣。具体来说,不同的过程如何介导干预的效果?这可以促进
构建未来的干预措施。但是,确定这种“介体”对结果的因果影响很困难。我们将开发新的方法,以在复杂的环境中与多个调解人和纵向调解人一起识别这些效果。另一个重要的问题是如何在半竞争风险的情况下确定干预措施对结果的因果影响。半竞争风险发生在研究终点可能会因死亡而被审查或审查导致随访或研究终止而受到审查的研究。还遵循了经历进步事件的受试者的生存,这可能会受到审查。该表格的数据已称为半竞争风险数据。该范式与某些脑癌试验特别相关,在某些脑癌试验中,半竞争风险是死亡和小脑进展。对于所有这些设置,贝叶斯方法是理想的选择,因为它允许人们适当地表征有关不变假设的不确定性(所有这些问题中都存在)。 此处开发的方法将有助于回答许多重要的临床问题,包括通过适当评估调解的能力以及治疗对时间对死亡时间和小脑在脑癌中的治疗的关节因果作用,包括体重管理和戒烟的行为改变机制。我们将为这些方法(通过PI的网页)传播代码,以确保研究人员在自己的研究中很容易使用这些方法。 PI与个人临床研究的PI合作的历史以及统计学家的研究人员将帮助团队通过相关会议的主题出版物和演讲来提供最佳科学,并促进我们的临床发现和新方法传播给适当的受众。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael J Daniels其他文献
An Exploration of Fixed and Random Effects Selection for Longitu- Dinal Binary Outcomes in the Presence of Non-ignorable Dropout 3.2 Variable Selection in Missing Data Mechanism 4 Simulation Studies
不可忽略丢失情况下纵向二元结果的固定和随机效应选择的探索 3.2 缺失数据机制中的变量选择 4 模拟研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ning Li;Michael J Daniels;Gang Li;R. Elashoff - 通讯作者:
R. Elashoff
Effects of an Intervention to Increase Bed Alarm Use to Prevent Falls in Hospitalized Patients
增加床报警器使用以预防住院患者跌倒的干预措施的效果
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:39.2
- 作者:
R. Shorr;A. Chandler;L. Mion;T. Waters;Minzhao Liu;Michael J Daniels;L. Kessler;Stephen T. Miller - 通讯作者:
Stephen T. Miller
Dietary assessment and estimation of intakedensitiesMichael
膳食评估和摄入密度估计Michael
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Michael J Daniels;A. Carriquiry - 通讯作者:
A. Carriquiry
Michael J Daniels的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael J Daniels', 18)}}的其他基金
Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
- 批准号:
10563598 - 财政年份:2023
- 资助金额:
$ 12.35万 - 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
- 批准号:
10618846 - 财政年份:2021
- 资助金额:
$ 12.35万 - 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
- 批准号:
10279399 - 财政年份:2021
- 资助金额:
$ 12.35万 - 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
- 批准号:
10430254 - 财政年份:2021
- 资助金额:
$ 12.35万 - 项目类别:
BAYESIAN APPROACHES FOR MISSINGNESS AND CAUSALITY IN CANCER AND BEHAVIOR STUDIES
癌症和行为研究中缺失和因果关系的贝叶斯方法
- 批准号:
9623592 - 财政年份:2018
- 资助金额:
$ 12.35万 - 项目类别:
BAYESIAN APPROACHES FOR MISSINGNESS AND CAUSALITY IN CANCER AND BEHAVIOR STUDIES
癌症和行为研究中缺失和因果关系的贝叶斯方法
- 批准号:
9437722 - 财政年份:2018
- 资助金额:
$ 12.35万 - 项目类别:
PREDOCTORAL TRAINING IN BIOMEDICAL BIG DATA SCIENCE
生物医学大数据科学博士前培训
- 批准号:
9116413 - 财政年份:2016
- 资助金额:
$ 12.35万 - 项目类别:
Bayesian approaches for missingness and causality in cancer and behavior studies
癌症和行为研究中缺失和因果关系的贝叶斯方法
- 批准号:
8672913 - 财政年份:2014
- 资助金额:
$ 12.35万 - 项目类别:
RESOURCE CORE 3: BIOSTATISTICS AND DATA MANAGEMENT CORE
资源核心 3:生物统计学和数据管理核心
- 批准号:
8206035 - 财政年份:2007
- 资助金额:
$ 12.35万 - 项目类别:
COVARIANCE ESTIMATION FOR LONGITUDINAL CANCER DATA
纵向癌症数据的协方差估计
- 批准号:
6288245 - 财政年份:2001
- 资助金额:
$ 12.35万 - 项目类别:
相似国自然基金
基于贝叶斯法的国家级考试成本-效果分析及优化:以执业医师资格考试的改革为例
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
基于贝叶斯法的国家级考试成本—效果分析及优化:以执业医师资格考试的改革为例
- 批准号:72104006
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于稀疏随机响应面法的单体滑坡系统失稳概率定量评估
- 批准号:41602304
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
不确定性损伤识别的改进贝叶斯理论及模态区间分析法
- 批准号:51578158
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
林分生长与收获模型不确定性的研究
- 批准号:31300537
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NICHD Neonatal Research Network (NRN): Clinical Centers (UG1 Clinical Trial Optional
NICHD 新生儿研究网络 (NRN):临床中心(UG1 临床试验可选
- 批准号:
10682888 - 财政年份:2023
- 资助金额:
$ 12.35万 - 项目类别:
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 12.35万 - 项目类别:
Genome-wide characterization of complex variants and their phenotypic effects in African populations
复杂变异的全基因组特征及其在非洲人群中的表型效应
- 批准号:
10721811 - 财政年份:2023
- 资助金额:
$ 12.35万 - 项目类别:
Using Causal Machine Learning Methods to Inform Tobacco Regulatory Science
使用因果机器学习方法为烟草监管科学提供信息
- 批准号:
10662955 - 财政年份:2023
- 资助金额:
$ 12.35万 - 项目类别:
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 12.35万 - 项目类别: