Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease

结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联

基本信息

  • 批准号:
    10618846
  • 负责人:
  • 金额:
    $ 57.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT The development of clinical cardiovascular disease (CVD) is a process that occurs across the lifespan, beginning early in life and spanning late into life as clinical event rates increase. Much of our understanding of the impact of cardiovascular risk factors comes from studies examining the association between risk factor levels measured at a single point in time, often in middle age, with incident disease over the short- to intermediate-term. However, risk factor levels in young adulthood are significantly associated with the development of CVD later in life and our recent work has demonstrated that not only the levels at specific ages, but also cumulative exposures and long-term trajectories in cardiovascular health are significantly related to the risk for subsequent CVD. Therefore, a life course approach is critical in order to understand how cardiovascular risk factors develop and impact an individual's risk for CVD events later in life. Yet there is no single study that has collected detailed phenotypic data spanning young adulthood through old age on a broadly representative sample of the U.S. population. In response to NOT-HL-19-712: Innovative Data Evaluation and Analysis to Health, we propose to de- velop a statistical framework for combining longitudinal risk factors and clinical outcomes data from multiple cohort studies to create a “synthetic cohort” enabling the study of long-term cardiovascular health starting in early adulthood. The investigative team of this proposal has pooled the data from 20 community-based CVD cohorts through the Lifetime Risk Pooling Project (LRPP), which now has >11 million person-years of follow- up data on repeated measures of CVD risk factors, detailed information about medication use (including blood pressure- and cholesterol-lowering therapy), nearly 100% follow-up for vital status, and detailed CVD event adju- dication. Few cohorts in the LRPP cover the entire adult lifespan; therefore, we propose to view risk factors and outcomes at ages not included in each cohort study as missing data, and to use multiple imputation to fill in these unobserved measurements to facilitate analysis. The overall goal of this project is to identify and measure the characteristics of CVD risk factor trajectories across the adult lifespan that are most amenable to intervention. Measuring these characteristics can help identify critical periods for intervention, more precisely define thresholds for known risk factors, elucidate the role of lifestyle behaviors, explain differences in health among populations, and promote CVD prevention strategies at younger ages. Our specific aims are: 1) Develop and validate a statistical framework for imputing unobserved CVD risk factors and events across the lifespan using data from the LRPP; 2) Inform treatment strategies by identifying clinically relevant features of longitudi- nal risk factor trajectories that are associated with CVD outcomes; 3) Leverage the work from Aims 1 and 2 to facilitate the dissemination and use of the synthetic LRPP data by the research community.
项目摘要/摘要 临床心血管疾病(CVD)的发展是整个生命周期的过程 随着临床事件的增加,生命的早期并延续到了生命后期。我们对影响的大部分理解 心血管危险因素的研究来自研究测量危险因素之间的关联 在一个时间点,通常在中年,在短期到中期的入射疾病。然而, 成年年轻的危险因素水平与CVD的发展显着相关, 我们最近的工作表明,不仅是特定年龄的水平,而且还累积暴露和 心血管健康中的长期轨迹与随后的CVD风险显着相关。所以, 生命课程方法至关重要,以了解心血管危险因素如何发展和影响 个人以后生活中CVD事件的风险。然而,没有一项研究收集了详细的表型 在美国人口的广泛代表样本中,成年年轻的数据跨越了年轻人。 为了响应非HL-19-712:对健康的创新数据评估和分析,我们建议 同层,一个结合纵向风险因素和临床结果数据的统计框架 队列研究以创建“合成队列”,使长期心血管健康的研究从 成年早期。该提案的调查团队已汇集了20个基于社区CVD的数据 通过终身风险池计划(LRPP)的同伙,该项目现在拥有1100万人的后续年度 - 提高有关CVD风险因素的重复度量的数据,有关药物使用的详细信息(包括血液 降压和胆固醇疗法),生命状态的几乎100%随访,详细的CVD事件相关 配给。 LRPP中很少有人群覆盖整个成人寿命;因此,我们建议查看风险因素和 每个队列研究中未包含的年龄成果作为缺失的数据,并使用多个插补来填写这些数据 未观察到的测量以促进分析。该项目的总体目标是识别和衡量 成人寿命中CVD风险因素轨迹的特征最适合 衡量这些特征可以帮助确定干预的关键时期 已知危险因素的定义阈值,阐明生活方式行为的作用,解释健康的差异 在人群中,并促进了年轻年龄段的CVD预防策略。我们的特定目的是:1) 并验证一个统计框架,以归纳整个生命周期中未观察到的CVD风险因素和事件 使用来自LRPP的数据; 2)通过确定纵向临床相关特征来为治疗策略提供信息 与CVD结果相关的NAL风险因素轨迹; 3)利用目标1和2到2到 促进研究界的综合LRPP数据的传播和使用。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael J Daniels其他文献

An Exploration of Fixed and Random Effects Selection for Longitu- Dinal Binary Outcomes in the Presence of Non-ignorable Dropout 3.2 Variable Selection in Missing Data Mechanism 4 Simulation Studies
不可忽略丢失情况下纵向二元结果的固定和随机效应选择的探索 3.2 缺失数据机制中的变量选择 4 模拟研究
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ning Li;Michael J Daniels;Gang Li;R. Elashoff
  • 通讯作者:
    R. Elashoff
Effects of an Intervention to Increase Bed Alarm Use to Prevent Falls in Hospitalized Patients
增加床报警器使用以预防住院患者跌倒的干预措施的效果
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    39.2
  • 作者:
    R. Shorr;A. Chandler;L. Mion;T. Waters;Minzhao Liu;Michael J Daniels;L. Kessler;Stephen T. Miller
  • 通讯作者:
    Stephen T. Miller
Dietary assessment and estimation of intakedensitiesMichael
膳食评估和摄入密度估计Michael
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael J Daniels;A. Carriquiry
  • 通讯作者:
    A. Carriquiry

Michael J Daniels的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael J Daniels', 18)}}的其他基金

Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
  • 批准号:
    10563598
  • 财政年份:
    2023
  • 资助金额:
    $ 57.65万
  • 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
  • 批准号:
    10279399
  • 财政年份:
    2021
  • 资助金额:
    $ 57.65万
  • 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
  • 批准号:
    10430254
  • 财政年份:
    2021
  • 资助金额:
    $ 57.65万
  • 项目类别:
BAYESIAN APPROACHES FOR MISSINGNESS AND CAUSALITY IN CANCER AND BEHAVIOR STUDIES
癌症和行为研究中缺失和因果关系的贝叶斯方法
  • 批准号:
    9623592
  • 财政年份:
    2018
  • 资助金额:
    $ 57.65万
  • 项目类别:
BAYESIAN APPROACHES FOR MISSINGNESS AND CAUSALITY IN CANCER AND BEHAVIOR STUDIES
癌症和行为研究中缺失和因果关系的贝叶斯方法
  • 批准号:
    9437722
  • 财政年份:
    2018
  • 资助金额:
    $ 57.65万
  • 项目类别:
PREDOCTORAL TRAINING IN BIOMEDICAL BIG DATA SCIENCE
生物医学大数据科学博士前培训
  • 批准号:
    9116413
  • 财政年份:
    2016
  • 资助金额:
    $ 57.65万
  • 项目类别:
Bayesian approaches for missingness and causality in cancer and behavior studies
癌症和行为研究中缺失和因果关系的贝叶斯方法
  • 批准号:
    8672913
  • 财政年份:
    2014
  • 资助金额:
    $ 57.65万
  • 项目类别:
Bayesian approaches for missingness and causality in cancer and behavior studies
癌症和行为研究中缺失和因果关系的贝叶斯方法
  • 批准号:
    9041551
  • 财政年份:
    2014
  • 资助金额:
    $ 57.65万
  • 项目类别:
RESOURCE CORE 3: BIOSTATISTICS AND DATA MANAGEMENT CORE
资源核心 3:生物统计学和数据管理核心
  • 批准号:
    8206035
  • 财政年份:
    2007
  • 资助金额:
    $ 57.65万
  • 项目类别:
COVARIANCE ESTIMATION FOR LONGITUDINAL CANCER DATA
纵向癌症数据的协方差估计
  • 批准号:
    6288245
  • 财政年份:
    2001
  • 资助金额:
    $ 57.65万
  • 项目类别:

相似国自然基金

无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
  • 批准号:
    62372118
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
  • 批准号:
    82300679
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
  • 批准号:
    82301784
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
  • 批准号:
    82301217
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
  • 批准号:
    82373667
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 57.65万
  • 项目类别:
Safety and Tolerability of TASIS-Peanut (Targeted Allergen Specific Immunotherapy within the Skin) patch for the Treatment of Peanut Allergy
TASIS-花生(皮肤内靶向过敏原特异性免疫疗法)贴剂治疗花生过敏的安全性和耐受性
  • 批准号:
    10551184
  • 财政年份:
    2023
  • 资助金额:
    $ 57.65万
  • 项目类别:
Validation of biomarkers of infant and toddler carotenoid intake
婴幼儿类胡萝卜素摄入量生物标志物的验证
  • 批准号:
    10636537
  • 财政年份:
    2023
  • 资助金额:
    $ 57.65万
  • 项目类别:
Re-examining links between screen time, health behaviors, and executive functioning: Validating an objective measure of screen exposure in a sample of young children
重新审视屏幕时间、健康行为和执行功能之间的联系:验证幼儿样本中屏幕暴露时间的客观测量
  • 批准号:
    10725847
  • 财政年份:
    2023
  • 资助金额:
    $ 57.65万
  • 项目类别:
Feasibility of a Hearing Program in Primary Care for Underserved Older Adults
为服务不足的老年人提供初级保健听力计划的可行性
  • 批准号:
    10727976
  • 财政年份:
    2023
  • 资助金额:
    $ 57.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了