A mega-analysis framework for delineating autism neurosubtypes
描述自闭症神经亚型的大型分析框架
基本信息
- 批准号:10681965
- 负责人:
- 金额:$ 78.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
ABSTRACT
This application proposes to lay the groundwork for precision medicine approaches to autism spectrum disorder
(ASD) by identifying reproducible clinically relevant brain-connectome-based subtypes. The proposal addresses
the clinical and biological heterogeneity of ASD by focusing on the intermediate level of analysis of systems
neuroscience, following clues that ASD is associated with abnormalities in the brain functional connectome.
Thus, we aim to identify neurosubtypes (NS), i.e., subgroups of individuals with homogeneous atypical features,
based on measures of intrinsic functional connectivity (iFC). Primary aims are to: 1) generate a large,
retrospectively harmonized data resource with comprehensive assessment of iFC and clinical phenotypes; 2)
identify iFC-based neurosubtypes and establish their associations with clinically relevant phenotypes; 3) test the
replicability of neurosubtypes and their associations with phenotypic measures in an independent sample . To
this end, we propose to leverage existing large-scale ASD neuroimaging data collections from the Autism Brain
Imaging Data Exchange, the National Database for Autism Research, and the Healthy Brain Network. Sample:
Age/Sex: Boys and girls, 6-18 years old. Diagnosis: ASD and neurotypical (NT) individuals. Size: to date, the
above neuroimaging resources contain a total N=3528; ASD n=2136, NT n=1392. Methods: Following
systematic and extensive data organization, rigorous quality assurance, and preprocessing we will proceed with
quantitative data harmonization using state-of-the-art methods. CovBat, the most advanced version of the
Bayesian framework, ComBat, will be applied to harmonize MRI data. It has been developed by Co-I Shinohara
to control for inter-scanner differences in MRI-based measures, as well as for errors arising from subject
differences in measurement covariance. Recent advances in item response theory will be used to harmonize
phenotypic data, informed by preliminary clinical work. To further enhance our clinical data harmonization efforts,
the neuroimaging data will be aggregated with phenotypic-only collections from Co-Is Lord and Bishop (ASD
n=1513). Connectopathy features: To scope the entire spectrum of ASD connectopathy, multiple features will be
assessed simultaneously for the first time. Neurosubtypes: Building on our feasibility work with Co-I Yeo,
homogeneous neural ASD subgroups will be identified through novel Bayesian latent factor modeling. It allows
for subjects to belong to subtypes in varying degrees, identifying hybrid, categorical and dimensional,
neurosubtypes. Other key questions include the relevance of MRI features studied, the diagnostic specificity of
neurosubtypes, and cross-subtyping method validity. The neurosubtypes identified and methods for
harmonization, along with all data generated for mega-analyses will be regularly shared, starting at the end of
year two. Findings will address critical knowledge gaps and the novel resource will offer the scientific community
opportunities to pursue independent inquiries transforming biological research and knowledge of ASD.
抽象的
该申请建议为自闭症谱系障碍的精确医学方法奠定基础
(ASD)通过鉴定可重现的临床相关性脑连通子类的亚型。该提案解决
ASD的临床和生物异质性通过着重于系统分析的中间水平
神经科学遵循ASD与大脑功能连接组中异常相关的线索。
因此,我们旨在鉴定神经蛋白术(NS),即具有同质异型特征的个体的亚组,
基于内在功能连接性(IFC)的度量。主要目的是:1)产生一个大型,
回顾性地协调数据资源,并对IFC和临床表型进行全面评估; 2)
识别基于IFC的神经材料,并与临床相关的表型建立关联; 3)测试
在独立样本中,神经材料及其与表型度量的关联的可复制性。到
这一目的,我们建议利用自闭症大脑的现有大规模ASD神经影像学数据收集
成像数据交换,自闭症研究国家数据库和健康的大脑网络。样本:
年龄/性别:男孩和女孩,6-18岁。诊断:ASD和神经型(NT)个体。尺寸:迄今为止
上面的神经影像资源包含n = 3528; asd n = 2136,nt n = 1392。方法:以下
系统和广泛的数据组织,严格的质量保证以及预处理,我们将继续进行
使用最先进的方法进行定量数据协调。 Covbat,最先进的版本
贝叶斯框架,战斗将用于协调MRI数据。它是由Co-i Shinohara开发的
控制基于MRI的措施以及受试者引起的错误的扫描仪之间的差异
测量协方差的差异。项目响应理论的最新进展将用于协调
表型数据,由初步临床工作告知。为了进一步增强我们的临床数据协调工作,
神经影像学数据将通过Co-Is Lord和Bishop(ASD
n = 1513)。连接疗法特征:为了范围范围aSD Connectopathy,将有多个功能
第一次同时评估。 Neurosubtypes:在我们与Co-i Yeo的可行性合作的基础上建立
均匀的神经ASD亚组将通过新型的贝叶斯潜在因子建模来识别。它允许
为了使受试者在不同程度上属于亚型,确定杂种,分类和维度,
神经材料。其他关键问题包括研究的MRI功能的相关性,
Neurosubtypes和跨填充方法的有效性。鉴定的神经材料和方法
统一的统一以及为大型分析生成的所有数据将定期共享,从
第二年。调查结果将解决关键的知识差距,新颖的资源将为科学界提供
追求独立询问的机会,改变了生物学研究和ASD的知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Adriana Di Martin...的其他基金
Neural signatures of outcome in preschoolers with autism
患有自闭症的学龄前儿童的神经特征
- 批准号:1020375010203750
- 财政年份:2018
- 资助金额:$ 78.96万$ 78.96万
- 项目类别:
Neural signatures of outcome in preschoolers with autism
患有自闭症的学龄前儿童的神经特征
- 批准号:97678669767866
- 财政年份:2018
- 资助金额:$ 78.96万$ 78.96万
- 项目类别:
Neural signatures of outcome in preschoolers with autism
患有自闭症的学龄前儿童的神经特征
- 批准号:1044270810442708
- 财政年份:2018
- 资助金额:$ 78.96万$ 78.96万
- 项目类别:
Neuronal Correlates of Autistic Traits in ADHD and Autism
ADHD 和自闭症患者自闭症特征的神经元相关性
- 批准号:91103199110319
- 财政年份:2015
- 资助金额:$ 78.96万$ 78.96万
- 项目类别:
Enhancing the Autism Brain Imaging Data Exchange to Define the Autism Connectome
加强自闭症脑成像数据交换以定义自闭症连接组
- 批准号:88233018823301
- 财政年份:2015
- 资助金额:$ 78.96万$ 78.96万
- 项目类别:
Intrinsic Brain Architecture of Young Children with Autism While Awake and Asleep
自闭症幼儿清醒和睡眠时的内在大脑结构
- 批准号:86217248621724
- 财政年份:2014
- 资助金额:$ 78.96万$ 78.96万
- 项目类别:
Translational Developmental Neuroscience of Autism
自闭症转化发展神经科学
- 批准号:83738888373888
- 财政年份:2010
- 资助金额:$ 78.96万$ 78.96万
- 项目类别:
Translational Developmental Neuroscience of Autism
自闭症转化发展神经科学
- 批准号:81970708197070
- 财政年份:2010
- 资助金额:$ 78.96万$ 78.96万
- 项目类别:
Translational Developmental Neuroscience of Autism
自闭症转化发展神经科学
- 批准号:77724157772415
- 财政年份:2010
- 资助金额:$ 78.96万$ 78.96万
- 项目类别:
Translational Developmental Neuroscience of Autism
自闭症转化发展神经科学
- 批准号:80094468009446
- 财政年份:2010
- 资助金额:$ 78.96万$ 78.96万
- 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Household Air Pollution, Adiposity, and Cardiorenal Disease Risk in Children
家庭空气污染、肥胖和儿童心肾疾病风险
- 批准号:1073906210739062
- 财政年份:2023
- 资助金额:$ 78.96万$ 78.96万
- 项目类别:
Designing a Hybrid Intervention Strategy to Reduce Alcohol Exposed Pregnancies Supplement
设计混合干预策略以减少妊娠期酒精暴露
- 批准号:1072329310723293
- 财政年份:2023
- 资助金额:$ 78.96万$ 78.96万
- 项目类别:
Leveraging complementary big data methods and patient intervention designs to optimize neural markers of adolescent cannabis use
利用互补的大数据方法和患者干预设计来优化青少年大麻使用的神经标记
- 批准号:1073952710739527
- 财政年份:2023
- 资助金额:$ 78.96万$ 78.96万
- 项目类别:
Physical Activity Behaviors and Readiness for a Digital Health Physical Activity Intervention inOlder Adults with Systemic Lupus Erythematosus
患有系统性红斑狼疮的老年人的身体活动行为和数字健康身体活动干预的准备
- 批准号:1072623010726230
- 财政年份:2023
- 资助金额:$ 78.96万$ 78.96万
- 项目类别:
Drive to Zero: Developing a digital cohort to understand the drivers of non-sustained viral suppression in the Deep South
驱向零:开发数字队列以了解南方腹地非持续病毒抑制的驱动因素
- 批准号:1067527010675270
- 财政年份:2023
- 资助金额:$ 78.96万$ 78.96万
- 项目类别: