Genetic analysis of intrinsic sensory neuron function in the enteric neural circuits
肠神经回路中内在感觉神经元功能的遗传分析
基本信息
- 批准号:10568622
- 负责人:
- 金额:$ 55.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-20 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAblationAddressAffectAfferent NeuronsAnimalsBiological AssayBiologyBrainCalcitonin Gene-Related PeptideCell physiologyCellsChemicalsColonCommunicationComplexCuesDefectDevelopmentEnteralEnteric Nervous SystemEnteroendocrine CellEnvironmentGastrointestinal DiseasesGastrointestinal MotilityGastrointestinal TransitGastrointestinal tract structureGeneticGoalsHealthImageImmuneImmunityIntestinesMechanical StimulationMechanicsMediatingMedicalModelingMolecularMovementMucous MembraneMusMuscleNerveNerve EndingsNervous SystemNeurogliaNeuromodulatorNeuronsNeuropeptidesOrganPatientsPatternPeriodicityPersonal SatisfactionPharmaceutical PreparationsPhysiologicalPilot ProjectsPlayPreparationProductivityQuality of lifeResourcesRoleSensorySignal TransductionStimulusTechnologyTestingTranslatingVertebratescell motilitycholinergicdetection platformgain of functiongastrointestinalgastrointestinal functiongenetic analysisgenetic approachgenetic manipulationgut microbiomegut microbiotagut-brain axisin vivoinsightintestinal barrierintestinal homeostasisloss of functionmicrobiota metabolitesmotility disordermotor behaviornervous system disorderneuralneural circuitneurogeneticsnew therapeutic targetnovel strategiesoptogeneticsresponsesensortooltreatment strategy
项目摘要
SUMMARY
The gastrointestinal (GI) tract is the only abdominal organ that has evolved with its own enteric nervous system
(ENS) fully contained within the gut wall, also known as the “second brain” in the gut. Our long-term goal is to
understand how the intrinsic primary sensory neurons (IPANs) in the ENS detect and respond to both physical
and chemical cues in the gut lumen and control propulsion of content in the colon.
Although known for about 25 years, the IPANs are still a subset of the most mysterious neurons in the ENS
because how they participate in coordinated muscle movements (motility), regulate immune cell function
(immunity) and maintain integrity of intestinal barrier is not completely understood. Equally as mysterious is
whether the IPANs can fulfil the function as a “pattern generator” and can control the rhythmicity of cyclical
propagating contractions along the colon. This is largely due to a lack of tools that can be used to selectively
manipulate the excitability of specific classes of enteric neurons and any drugs that have been tried to
stimulate or block activity in IPANs will likely act on many other types of neurons (or non-neuronal cells),
making interpretation of the results unclear.
In pilot studies, we have generated critical resources enabling us to identify and selectively targeting the β-
CGRP-expressing (β-CGRP+) IPANs. By using these unique resources, we will be able to ask important
questions regarding the roles of the β-CGRP+ IPANs in the ENS: What role the β-CGRP+ IPANs have in the
propagation of neural activity along the gut? Are these IPANs activated by both mechanical and chemical cues
in the gut lumen? Can these IPANs serve as cellular sensors for distinct microbiota-derived metabolites?
This proposal represents a major technical advance by using cutting-edge neurogenetic approaches which
make it possible to genetically target and determine the functionality of the β-CGRP+ IPANs in the ENS both
ex vivo and in vivo, providing the first insights into how selective activation and inhibition of the β-CGRP+
IPANs in the ENS affects GI-motility. This information will advance our understanding of the inner workings of
the ENS and shed new insights on the development of novel strategies for the treatment of motility-related GI
disorders by targeting the IPANs in the ENS.
概括
胃肠道(GI)道是唯一随着其肠神经系统进化的腹部器官
(ENS)完全包含在肠壁中,也称为肠道中的“第二脑”。我们的长期目标是
了解ENS中的固有主要感觉神经元(IPAN)如何检测并响应这两种物理
和肠道内的化学提示,并控制结肠中含量的推进。
尽管IPAN大约25年,但IPAN仍然是ENS中最神秘的神经元的子集
因为他们如何参与协调的肌肉运动(运动),调节免疫细胞功能
(免疫力)并保持肠道屏障的完整性尚未完全理解。同样神秘的是
IPAN是否可以作为“模式发生器”来实现该功能,并且可以控制周期性的节奏性
沿结肠传播宫缩。这主要是由于缺乏可用于选择性的工具
操纵特定类别的肠神经元和任何试图尝试的药物的兴奋
刺激或阻断IPAN的活性可能会对许多其他类型的神经元(或非神经元细胞)作用,
使结果解释不清楚。
在试点研究中,我们产生了关键的资源,使我们能够识别并有选择地靶向β-
CGRP表达(β-CGRP+)IPAN。通过使用这些独特的资源,我们将能够问重要
有关β-CGRP+ ipans在ENS中的作用的问题:β-CGRP+ IPAN在
沿肠道的神经活动的传播?这些IPAN是否被机械和化学提示激活
在肠道里?这些IPAN可以用作不同微生物源代谢物的细胞传感器吗?
该提案通过使用尖端的神经遗传学方法代表了一个重大的技术进步
使得可以普遍靶向并确定ENS中β-CGRP+ IPAN的功能
离体和体内,提供了对β-CGRP+选择性激活和抑制的首次见解
ENS中的IPAN会影响胃肠道。这些信息将提高我们对内在运作的理解
ENS并提供了有关与运动相关的GI治疗新策略发展的新见解
通过针对ENS中的IPAN来定位疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongzhen Hu其他文献
Hongzhen Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongzhen Hu', 18)}}的其他基金
Deciphering Ion Channel Mechanisms Underlying Mechanosensitivity in the Gut
破译肠道机械敏感性背后的离子通道机制
- 批准号:
10889525 - 财政年份:2023
- 资助金额:
$ 55.27万 - 项目类别:
Deciphering the Piezo2-Merkel cell signaling mechanisms in itch
破译瘙痒中的 Piezo2-Merkel 细胞信号传导机制
- 批准号:
10890431 - 财政年份:2023
- 资助金额:
$ 55.27万 - 项目类别:
Deciphering the Piezo2-Merkel cell signaling mechanisms in itch
破译瘙痒中的 Piezo2-Merkel 细胞信号传导机制
- 批准号:
10676917 - 财政年份:2020
- 资助金额:
$ 55.27万 - 项目类别:
Deciphering the Piezo2-Merkel cell signaling mechanisms in itch
破译瘙痒中的 Piezo2-Merkel 细胞信号传导机制
- 批准号:
10454374 - 财政年份:2020
- 资助金额:
$ 55.27万 - 项目类别:
Deciphering the Piezo2-Merkel cell signaling mechanisms in itch
破译瘙痒中的 Piezo2-Merkel 细胞信号传导机制
- 批准号:
10225638 - 财政年份:2020
- 资助金额:
$ 55.27万 - 项目类别:
MECHANISMS OF TRPV4-MEDIATED NEUROPATHIC PAIN
TRPV4 介导的神经病理性疼痛的机制
- 批准号:
10204872 - 财政年份:2018
- 资助金额:
$ 55.27万 - 项目类别:
MECHANISMS OF TRPV4-MEDIATED NEUROPATHIC PAIN
TRPV4 介导的神经病理性疼痛的机制
- 批准号:
10443627 - 财政年份:2018
- 资助金额:
$ 55.27万 - 项目类别:
Deciphering Ion Channel Mechanisms Underlying Mechanosensitivity in the Gut
破译肠道机械敏感性背后的离子通道机制
- 批准号:
10454279 - 财政年份:2015
- 资助金额:
$ 55.27万 - 项目类别:
Deciphering Ion Channel Mechanisms Underlying Mechanosensitivity in the Gut
破译肠道机械敏感性背后的离子通道机制
- 批准号:
10116046 - 财政年份:2015
- 资助金额:
$ 55.27万 - 项目类别:
TARGETING THE TRANSIENT RECEPTOR POTENTIAL CHANNELS TO IMPROVE BOWEL DYSFUNCTION
针对瞬时受体的潜在通道来改善肠功能障碍
- 批准号:
8962583 - 财政年份:2015
- 资助金额:
$ 55.27万 - 项目类别:
相似国自然基金
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向肝癌射频消融的智能建模与快速动力学分析方法研究及其临床验证
- 批准号:62372469
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
IRF9调控CD8+T细胞介导微波消融联合TIGIT单抗协同增效抗肿瘤的作用机制
- 批准号:82373219
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
建立可诱导细胞消融系统揭示成纤维细胞在墨西哥钝口螈肢体发育及再生中的作用
- 批准号:32300701
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肿瘤源PPIA介导结直肠癌肝转移射频消融术残瘤化疗抵抗的机制研究
- 批准号:82302332
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Liquid biopsy and radiomics for liver cancer surveillance
用于肝癌监测的液体活检和放射组学
- 批准号:
10736720 - 财政年份:2023
- 资助金额:
$ 55.27万 - 项目类别:
Inter-alpha Inhibitors in Experimental Necrotizing Enterocolitis
实验性坏死性小肠结肠炎中的α间抑制剂
- 批准号:
10822492 - 财政年份:2023
- 资助金额:
$ 55.27万 - 项目类别:
Developing microwave epiphysiodesis to correct limb length discrepancies
开发微波骨骺固定术以纠正肢体长度差异
- 批准号:
10804031 - 财政年份:2023
- 资助金额:
$ 55.27万 - 项目类别:
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10584507 - 财政年份:2022
- 资助金额:
$ 55.27万 - 项目类别:
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10448971 - 财政年份:2022
- 资助金额:
$ 55.27万 - 项目类别: