A Novel Framework for Sensitive and Reliable Early Diagnosis, Topographic Mapping, and Stiffness Classification of Colorectal Cancer Polyps
一种用于结直肠癌息肉敏感且可靠的早期诊断、地形测绘和硬度分类的新框架
基本信息
- 批准号:10742476
- 负责人:
- 金额:$ 17.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-20 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional4D ImagingAddressAlgorithmsAnatomyAreaBiopsyCancer CenterCancer EtiologyCessation of lifeCharacteristicsClassificationClinicalColonColonoscopyColorectal CancerColorectal NeoplasmsComputer Vision SystemsConfusionDetectionDevelopmentDevicesDiagnosisEarly DiagnosisElasticityEndoscopesEnsureEvaluationExcisionFeedbackGastrointestinal PolypGeometryGoalsImageIncidenceIntelligenceIntuitionMachine LearningMalignant neoplasm of gastrointestinal tractMapsMedicalModulusMorphologyOperative Surgical ProceduresOutputPerformancePolypsPrecancerous PolypProceduresQualitative EvaluationsQuantitative EvaluationsRadiationRadiation therapyResectedResolutionReview LiteratureRoboticsShapesSurfaceSurgeonSystemTactileTechnologyTestingTextureThree-Dimensional ImageTimeTreatment outcomeTumor stageVisionVisualbiomaterial compatibilitycancer typechemotherapyclinical diagnosiscolon cancer patientsdesigndiagnostic platformexperimental studyfabricationimprovedin vivoinnovationintelligent algorithmmachine learning algorithmmicroscopic imagingmortalitynovelpreclinical evaluationresponsescreeningsensor technologysurvival outcometimelinetreatment stratificationtumor
项目摘要
Summary/Abstract:
Our long-term goal is to develop a novel soft robotic endoscope with intelligent tactile sensing balloons and
complementary machine learning (ML) and computer vision (CV) algorithms to enhance early-stage detection,
accurate tumor localization, and treatment stratification of various gastrointestinal (GI) cancers. This robotic
framework provides clinicians with (i) a safe and intuitively-steerable soft robotic endoscope to perform precise
diagnosis, biopsy, and surgical procedures; (ii) in vivo high-fidelity visual, textural, and stiffness information of
the diagnosed anatomy; (iii) in vivo radiation-free quantified topographic mapping and morphological
characterization (i.e., shape and texture) of GI polyps using CV algorithms; (iv) intelligent real-time in vivo
classification of type and stiffness of detected polyps using ML algorithms; and more importantly (v) quantitative
evaluations of tumor response during chemo- and radiation-therapy period via in vivo topographic/stiffness
mapping. Considering the 2-year timeline of this collaborative project, in this proposal, we will mainly
focus on the design, development, and thorough evaluation of a novel and soft Vision-based Tactile
Sensing Balloon (VTSB) with complementary Computer Vision (CV) and Machine Learning (ML)
algorithms to perform high-resolution in vivo topographic mapping and stiffness classification of
Colorectal Cancer (CRC) polyps.
CRC is the leading cause of cancer incidence and mortality worldwide. In 2020, CRC accounted for 1.9 million
new cases (i.e., #3 cancer type in ranking) and 935,000 new deaths (i.e., #2 cancer type in ranking). Since
survival outcomes differ significantly based on the tumor stage at the time of detection, early detection via
colonoscopy has a significant impact on treatment outcomes. Morphological characteristics (i.e., shape and
texture) and change in the modulus of elasticity of CRC polyps are well-known to be associated with tumor type
and stage. Colonoscopic procedures, therefore, are of paramount importance as they can help in early detection
and removal of pre-cancerous polyps. However, state-of-the-art traditional colonoscopic procedures still solely
rely on visual 2D/3D images and cannot yet provide the clinicians with in vivo detailed textural and stiffness
feedback. These limitations has caused high polyp miss rate (about 20%-30%) as well as heavily subjective and
evaluator-dependent tumor identification and classifications.
It is our central hypothesis that utilizing the proposed VTSB with complementary ML and CV algorithms, can
collectively address the limitations of the state-of-the-art colonoscopic technologies by (1) readily integrating with
the existing colonoscopic systems and not changing the current clinical diagnosis workflow, (2) providing high-
resolution 4D imaging (3D texture mapping + stiffness classification), (3) decreasing polyp miss-rate, and (4)
enhancing in vivo polyps’ type and stage classification. The proposed contribution is significant, high impact, and
innovative and our goal is to demonstrate that it can significantly improve the current diagnosis procedures and
shift the current clinical paradigm.
摘要/摘要:
我们的长期目标是用智能的触觉灵敏度气球开发出一种新颖的软机器人内窥镜,
补充机器学习(ML)和计算机视觉(CV)算法以增强早期检测,
精确的肿瘤定位以及各种胃肠道(GI)癌症的治疗分层。这个机器人
框架为临床医生提供了(i)安全且直观的软机器人内窥镜,以执行精确
诊断,活检和手术程序; (ii)体内高保真视觉,质地和刚度信息
诊断解剖学; (iii)体内无辐射的量化地形图和形态学
使用CV算法对GI息肉的表征(即形状和纹理); (iv)体内聪明的实时实时
使用ML算法对检测到的息肉的类型和刚度进行分类;更重要的是(v)定量
通过体内地形/僵硬评估化学和放射治疗期间肿瘤反应的评估
映射。考虑到该协作项目的两年时间表,在此提案中,我们将主要
专注于设计,开发和彻底评估基于新颖和软视力的触觉
使用完整的计算机视觉(CV)和机器学习(ML)传感气球(VTSB)
在体内地形图和刚度分类中执行高分辨率的算法
结直肠癌(CRC)息肉。
CRC是全球癌症发病率和死亡率的主要原因。 2020年,CRC占190万
新病例(即#3排名中的癌症类型)和935,000例新死亡(即排名中的#2癌症类型)。自从
根据检测时的肿瘤阶段,通过
结肠镜检查对治疗结果有重大影响。形态学特征(即形状和形状
质地)和CRC息肉弹性模量的变化众所周知与肿瘤类型有关
和舞台。因此,结肠镜检查非常重要,因为它们可以在早期检测中提供帮助
并去除癌前息肉。但是,最先进的传统结肠镜检查仍然完全
依靠视觉2D/3D图像,但仍无法为临床医生提供体内详细的质地和僵硬
反馈。这些局限性导致高息肉率(约20%-30%)以及主观主观和
评估依赖性肿瘤鉴定和分类。
我们的核心假设是,将建议的VTSB与完整的ML和CV算法一起使用,可以
通过(1)轻松整合到最先进的结肠镜技术的局限性
现有的结肠镜系统,不改变当前的临床诊断工作流程,(2)提供高
分辨率4D成像(3D纹理映射 +刚度分类),(3)减少息肉率率和(4)
增强体内息肉的类型和舞台分类。拟议的贡献是显着的,高影响力,并且
创新的和我们的目标是证明它可以显着改善当前的诊断程序和
移动当前的临床范例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farshid Alambeigi其他文献
Farshid Alambeigi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farshid Alambeigi', 18)}}的其他基金
A Novel Semi-autonomous Surgeon-in-the-loop in situ Robotic Bioprinting System for Functional and Cosmetic Restoration of Volumetric Muscle Loss Injuries
一种新型半自主外科医生在环原位机器人生物打印系统,用于体积肌肉丢失损伤的功能和美容恢复
- 批准号:
10473273 - 财政年份:2022
- 资助金额:
$ 17.87万 - 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
- 批准号:
10218941 - 财政年份:2021
- 资助金额:
$ 17.87万 - 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
- 批准号:
10541197 - 财政年份:2021
- 资助金额:
$ 17.87万 - 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
- 批准号:
10374927 - 财政年份:2021
- 资助金额:
$ 17.87万 - 项目类别:
相似国自然基金
融合闪烁光刺激与4D定量OCTA的视网膜功能成像技术与应用研究
- 批准号:62075189
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
复杂背景中行人目标的4D光场视觉感知机制与识别方法研究
- 批准号:61906133
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于高光谱-可见光成像的水稻叶绿素4D表型提取方法研究
- 批准号:31800305
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于结构与动态联合先验的PET心肌灌注直接4D参数成像方法
- 批准号:81871437
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
4D成像技术研究及其在龙门山断裂带介质演化中的应用
- 批准号:41674090
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
A computational approach combining 4D Flow and CFD for improved determination of cerebral hemodynamics
结合 4D Flow 和 CFD 的计算方法可改进脑血流动力学测定
- 批准号:
10581283 - 财政年份:2023
- 资助金额:
$ 17.87万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 17.87万 - 项目类别:
SCH: Novel and Interpretable Statistical Learning for Brain Images in AD/ADRDs
SCH:针对 AD/ADRD 大脑图像的新颖且可解释的统计学习
- 批准号:
10816764 - 财政年份:2023
- 资助金额:
$ 17.87万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 17.87万 - 项目类别: