A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws

使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统

基本信息

  • 批准号:
    10374927
  • 负责人:
  • 金额:
    $ 18.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Summary/Abstract: Our long-range goal is to develop a novel semi-autonomous, minimally-invasive, image-guided neurosurgical robotic workstation that consists of a robotic positioning mechanism, a continuum manipulator, flexible instruments, and flexible implants (i.e., flexible pedicle screws (FPSs)) to enable the next generation of minimally- and less-invasive spinal interventions. By providing access to regions within vertebral body, which currently are not accessible utilizing conventional rigid surgical instruments, this neurosurgical robotic workstation will enable surgical treatment of various bone defects in spine such as compression on the spinal cord and/or nerve roots, metastatic bone disease, and vertebral compression fractures due to severe osteoporosis. For this project, we mainly will focus on the mechanical design, development, basic control, and assessment of the subsystems of this novel robotic system with the goal of minimally invasive spinal fusion of osteoporotic vertebrae. Approximately 54 million Americans age 50 and older have osteoporosis causing an estimated two million broken bones per year in the US only. Vertebral fractures are the most common type of osteoporotic fractures (about 47%), which can lead to back pain, loss of height, and further vertebral and non-vertebral fractures. Failure of non-surgical treatments often leads to a spinal fusion surgery to restore stability of the spine using Rigid Pedicle Screws (RPSs). However, anatomical constraints and rigidity of instruments and screws force the surgeon to typically implant the screw inside the low bone mineral density (BMD) regions of the vertebrae in an osteoporotic spine. This results in an increased risk of screws loosening, pullout, and subsequently a surgical failure. It is our central hypothesis that utilizing the proposed minimally-invasive robotic system, the success rate of spinal fusions with RPSs can be significantly improved. This improvement will happen by (i) developing a biomechanical analysis module to plan a curved drilling trajectory based on the spatial (3D) BMD in the vertebra obtained by QCT scans; (ii) increasing the reachability of the surgeons and enabling them to drill in high-BMD regions of vertebra using a steerable drilling robot and the curved-drilling technique; (iii) selectively implanting/anchoring the FPSs within the pre-planned drilled curved trajectories inside the high-BMD regions, which can improve the pullout strength and stability of fusion; (iv) Biomechanical analysis of the fusion with FPS and/or bone cemnet to optimize the spine stability, prevent vertebral collapse, and a need for revision surgery. The proposed contribution is significant, high impact, and innovative since it offers to eliminate the aforementioned complications of current spinal fusion surgery by proposing novel and innovative techniques. To our knowledge, robotically-assisted techniques utilizing a steerable drilling robot and FPSs have not been developed for a minimally invasive spinal fusion of osteoporotic vertebrae. Our goal is to demonstrate that the proposed system can significantly improve the current treatment of osteoporotic vertebrae and shift the current clinical paradigm.
摘要/摘要: 我们的远程目标是开发一种新颖的半自治,微创,图像引导的神经外科手术 机器人工作站由机器人定位机制,连续操作器,灵活组成 仪器和柔性植入物(即柔性椎弓根螺钉(FPSS)),使下一代微型 和侵入性的脊柱干预措施。通过提供椎体内部的区域的访问,目前是 使用常规的刚性手术器械无法使用,该神经外科机器人工作站将启用 脊柱中各种骨缺损的手术治疗,例如脊髓和/或神经根部的压缩, 由于严重的骨质疏松症引起的转移性骨病和椎骨压缩性骨折。对于这个项目,我们 主要将重点关注机械设计,开发,基本控制和评估 这个新型的机器人系统,其目标是骨质疏松性椎骨的微创脊柱融合。 大约50岁及50岁的美国人患有骨质疏松症,估计造成200万 仅在美国每年骨折。椎骨骨折是骨质疏松性骨折的最常见类型 (约47%),这可能导致背部疼痛,身高下降以及进一步的椎骨和非椎骨骨折。失败 非手术治疗通常会导致脊柱融合手术以使用刚性恢复脊柱的稳定性 椎弓根螺钉(RPS)。但是,仪器和螺钉的解剖学约束和刚度迫使 外科医生通常将螺钉植入椎骨的低骨矿物质密度(BMD)区域 骨质疏松性脊柱。这导致螺钉松开,拔出和随后的外科手术的风险增加 失败。 我们的中心假设是利用所提出的最低侵入性机器人系统的成功率 与RPS的脊柱融合可以显着改善。 (i)开发一个 生物力学分析模块以基于椎骨的空间(3D)BMD计划弯曲的钻孔轨迹 通过QCT扫描获得; (ii)提高外科医生的可及性并使其能够在高BMD中进行钻探 椎骨的区域使用可辨钻探机器人和弯曲的钻孔技术; (iii)有选择地 将FPS植入/锚定在高BMD区域内的预先计划的钻探曲线中, 可以提高融合的拔出强度和稳定性; (iv)与FPS融合的生物力学分析 和/或骨Cemnet,以优化脊柱稳定性,防止椎骨塌陷,并需要进行翻修手术。 拟议的贡献是显着的,高影响力和创新性的,因为它提供了消除 当前脊柱融合手术的并发症通过提出新颖和创新的技术。到 我们的知识,使用可进入的钻探机器人和FPS的机器人辅助技术尚未 开发用于骨质疏松性椎骨的微创脊柱融合。我们的目标是证明 提出的系统可以显着改善骨质疏松椎骨的当前处理,并移动电流 临床范式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Farshid Alambeigi其他文献

Farshid Alambeigi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Farshid Alambeigi', 18)}}的其他基金

A Novel Framework for Sensitive and Reliable Early Diagnosis, Topographic Mapping, and Stiffness Classification of Colorectal Cancer Polyps
一种用于结直肠癌息肉敏感且可靠的早期诊断、地形测绘和硬度分类的新框架
  • 批准号:
    10742476
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
A Novel Semi-autonomous Surgeon-in-the-loop in situ Robotic Bioprinting System for Functional and Cosmetic Restoration of Volumetric Muscle Loss Injuries
一种新型半自主外科医生在环原位机器人生物打印系统,用于体积肌肉丢失损伤的功能和美容恢复
  • 批准号:
    10473273
  • 财政年份:
    2022
  • 资助金额:
    $ 18.84万
  • 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
  • 批准号:
    10218941
  • 财政年份:
    2021
  • 资助金额:
    $ 18.84万
  • 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
  • 批准号:
    10541197
  • 财政年份:
    2021
  • 资助金额:
    $ 18.84万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
Core D: Integrated Computational Analysis Core
核心D:综合计算分析核心
  • 批准号:
    10555896
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
Promoting regenerative repair of aged cartilage
促进老化软骨的再生修复
  • 批准号:
    10660184
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
  • 批准号:
    10724882
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
Novel Polymer-antibody Conjugates as Long-acting Therapeutics for Ocular Diseases
新型聚合物-抗体缀合物作为眼部疾病的长效治疗药物
  • 批准号:
    10760186
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了