Arginase-1 signaling after neonatal stroke
新生儿中风后精氨酸酶 1 信号转导
基本信息
- 批准号:10664501
- 负责人:
- 金额:$ 19.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAgeApoptoticAreaArginineBiological AssayBrainBrain Hypoxia-IschemiaBrain regionCellsChildCicatrixCoagulation ProcessCollagen Type ICommon carotid arteryComplexCytoskeletonDataData AnalysesDefectEnsureExhibitsExposure toExtracellular MatrixExtracellular Matrix ProteinsFundingGene Expression ProfileGoalsGrowthHistologicHypoxiaHypoxic-Ischemic Brain InjuryImmune responseIndividualInflammationIngestionInjuryIschemiaKnowledgeLaboratoriesLearningMediatingMentorsMethodologyMethodsMicrogliaModelingMolecularMusNerve RegenerationNeurogliaNeuronsOrganOutcomePathway interactionsPerformancePhagocytesPhysiciansPolyaminesProceduresProcessProductionProlineProteinsRNAResearchResearch Project SummariesRoleScientistSignal PathwaySignal TransductionSiteStructureTechniquesTestingTherapeuticTimeTissuesTranslatingTubular formationUse of New TechniquesWestern Blottinganimal carearginasecareercareer developmentcell typedisabilityexperimental studyimprovedin vivoinhibitormigrationmultiple omicsnatural hypothermianeonatal brainneonatal hypoxic-ischemic brain injuryneonatal strokeneuralneurodevelopmentneuroimmunologyneuroinflammationneuropathologyneuroprotectionnovelpost strokeregenerativeregenerative tissuerepairedresponsespatiotemporalstem cellstimelinetissue regenerationtissue repairtissue-repair responsestranscriptome
项目摘要
PROJECT SUMMARY
This research plan is based on a strong scientific premise that hypoxic-ischemic (HI) brain injury induces brain
arginase-1 (ARG-1) to exhibit selected neuroprotective functions, such as efferocytosis and regenerative scar
formation. In our preliminary studies, we detected spatiotemporal changes in ARG1 expression and activity as
a result of neonatal HI. We have shown ARG1 localized mostly in microglia at the injury site early after injury
performing efferocytosis and persisted in the injury core at later timepoints in the area of the tissue scar. ARG1
inhibition decreased ARG1 efferocytic function and worsened histological outcomes. While ARG1 involvement
in efferocytosis and scar formation in other organs is well documented, ARG1-dependent mechanisms of
efferocytosis and scar formation in the neonatal brain after HI are unknown. I hypothesize that ARG-1 regulates
efferocytosis by providing polyamines for cytoskeleton assembly, and efficient efferocytosis is a crucial process
for regenerative scar formation where ARG1 provides proline for extracellular matrix formation. Using in vivo the
Vannucci procedure (common carotid artery coagulation followed by exposure to hypoxia in P9 mice) to induce
HI, I will test my hypothesis in the following Specific aims: I will define whether HI induces polyamine pathway in
ARG1 microglia, and whether ARG1 inhibition translates to defects in cytoskeleton assembly and performance
of efferocytosis (Aim 1). I will characterize how ARG1 signaling alters cell composition in the scar and production
of the extracellular matrix (Aim 2). I will determine whether efferocytosis is necessary for scar formation, if
changes in ARG1 signaling alter local immune response in the injury core and whether this impacts migration of
progenitor cells to the scar and tissue remodeling (Aim 3). The aims will be conducted using novel techniques,
such as TRAPseq and spatial seqFISH that will significantly improve our understanding of processes in individual
cells and cellular transcriptome in 3D. The proposed project will significantly improve our understanding of
arginase-1 pathway, efferocytosis and tissue regeneration as a modifier of brain hypoxic-ischemic injury. This
project will also significantly advance my scientific growth through learning besides the basics of
neuroimmunology, the multiomics approaches and advanced data analysis necessary for my independent
research career. Dr. Ferriero and I selected outstanding mentors, that together with coursework and research
plans are aligned to address my specific knowledge gaps to ensure my career development as an independently
funded physician scientist and to apply for an R01 at the end of this proposal. The proposed experiments and
timeline are within my capabilities and the capabilities of the laboratory, animal care, and UCSF facilities.
项目概要
该研究计划基于一个强有力的科学前提,即缺氧缺血(HI)脑损伤会诱发脑损伤
精氨酸酶-1 (ARG-1) 表现出选定的神经保护功能,例如胞吞作用和再生疤痕
形成。在我们的初步研究中,我们检测到 ARG1 表达和活性的时空变化:
新生儿 HI 的结果。我们已经表明 ARG1 在损伤后早期主要定位于损伤部位的小胶质细胞中
执行胞吞作用并在组织疤痕区域的稍后时间点持续存在于损伤核心中。 ARG1
抑制降低了 ARG1 细胞功能并恶化了组织学结果。当ARG1参与时
在其他器官的胞吞作用和疤痕形成中,ARG1 依赖性机制已得到充分记录。
HI 后新生儿大脑中的胞吞作用和疤痕形成尚不清楚。我假设 ARG-1 调节
通过为细胞骨架组装提供多胺来进行胞吞作用,而有效的胞吞作用是一个关键过程
用于再生性疤痕形成,其中 ARG1 为细胞外基质形成提供脯氨酸。在体内使用
Vannucci 程序(颈总动脉凝固,然后 P9 小鼠暴露于缺氧)以诱导
HI,我将在以下方面检验我的假设 具体目标:我将定义 HI 是否会诱导多胺途径
ARG1 小胶质细胞,以及 ARG1 抑制是否会导致细胞骨架组装和性能缺陷
胞吞作用(目标 1)。我将描述 ARG1 信号传导如何改变疤痕和生产中的细胞组成
细胞外基质(目标 2)。我将确定胞吞作用对于疤痕形成是否是必要的,如果
ARG1 信号的变化会改变损伤核心的局部免疫反应,以及这是否会影响
祖细胞对疤痕和组织重塑的影响(目标 3)。这些目标将使用新技术来实现,
例如 TRAPseq 和空间 seqFISH 将显着提高我们对个体过程的理解
3D 细胞和细胞转录组。拟议的项目将显着提高我们对
精氨酸酶-1 途径、胞吞作用和组织再生作为脑缺氧缺血性损伤的调节剂。这
除了基础知识之外,该项目还将通过学习显着促进我的科学成长
神经免疫学、多组学方法和高级数据分析是我的独立研究所必需的
研究生涯。 Ferriero 博士和我挑选了杰出的导师,以及课程作业和研究
计划旨在解决我的具体知识差距,以确保我作为独立的职业发展
资助医师科学家并在本提案末尾申请 R01。所提出的实验和
时间表在我的能力范围内以及实验室、动物护理和加州大学旧金山分校设施的能力范围内。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jana Krystofova Mike其他文献
Jana Krystofova Mike的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 19.72万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 19.72万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 19.72万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 19.72万 - 项目类别: