A computational approach combining 4D Flow and CFD for improved determination of cerebral hemodynamics
结合 4D Flow 和 CFD 的计算方法可改进脑血流动力学测定
基本信息
- 批准号:10581283
- 负责人:
- 金额:$ 12.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-13 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional4D MRIAddressBlood VesselsCaliberCardiacCerebrumClinicalComplexComputational GeometryComputer ModelsDataData SetDecision MakingDescriptorDevelopmentDiastoleDisease ProgressionEvaluationEvolutionExperimental ModelsFundingGenerationsGeometryGrowthImageInterventionIntracranial AneurysmLearningLiquid substanceMagnetic Resonance ImagingManualsMapsMeasuresMedicalMethodsMissionModelingMotionNational Heart, Lung, and Blood InstituteNoiseOperative Surgical ProceduresPatient observationPatient-Focused OutcomesPatientsPhaseProcessPulsatile TinnitusReference StandardsResearchResolutionRuptureSamplingStructureSystemSystoleTechnologyTimeTrainingVascular DiseasesVeinsVenousautomated analysisautomated segmentationcerebral hemodynamicscontrast enhanceddeep learninghemodynamicshuman dataimprovedin vivointracranial arterylearning networkneural networknovelpredict clinical outcomepredictive markerprogramssecondary analysissimulationtooltreatment responseultra high resolutionvirtual
项目摘要
PROJECT SUMMARY
This project aims to generate super-resolution time-resolved phase-contrast MRI (4D flow MRI) for improved
quantification of cerebral hemodynamics. Our team has collected extensive in vivo 4D Flow data in several other
funded projects. That data was processed with conventional manual methods and was limited by the relatively
modest acquisition resolution. We have data of three levels of complexity. The first is extremely high-quality data
in very carefully controlled flow models created with patient-specific geometries and flow conditions. Second, is
in vivo data from the intracranial venous outflow tract, collected from 58 patients with pulsatile tinnitus (PT). In
these territories, the flow has relatively little pulsatility but is geometrically complex with pronounced vorticity.
Finally, we have 4D Flow data from 148 patients with intracranial aneurysms (IA). Using these existing datasets,
we propose an incremental progression to develop advanced methods for improving 4D flow resolution.
There is compelling evidence that hemodynamic parameters are of major importance in determining the
evolution of vascular disease progression, and response to therapy. In principle, 4D Flow MRI can be used to
determine the velocity field in three-dimensions and through the cardiac cycle. However, using acceptable
acquisition times, the resolution is insufficient for reliable velocity mapping given the small caliber of the
intracranial vessels. Patient-specific computational and experimental models can provide superior resolution, but
their accuracy depends on modeling simplifications and assumptions. We propose to address the current
limitations of 4D flow images by developing a deep learning based, super-resolution approach. In this approach,
the flow in cerebral vessels will be imaged with 4D Flow MRI and simulated with patient-specific Computational
Fluid Dynamics (CFD).
In this study, we will first generate 3D CFD simulation of hemodynamics in patient-specific data. Then, we will
develop a super-resolution neural network using CFD data to provide higher resolution 4D flow data. Successful
accomplishment of this project will provide an evaluation tool that is validated for improved quantification of
cerebral hemodynamics. A tool such as this could be used to stage interventional treatments and improve patient
outcomes, in direct support of the National Heart, Lung, and Blood Institute mission.
项目摘要
该项目旨在生成超分辨率的时间分辨相对比MRI(4D Flow MRI)以进行改进
脑血动力学的定量。我们的团队已在其他几个中收集了大量的体内4D流数据
资助的项目。该数据是使用常规手动方法处理的,并受到相对限制
适度的采集解决。我们拥有三个复杂级别的数据。第一个是极高的数据
在非常仔细控制的流动模型中,由患者特异性的几何形状和流动条件产生。第二,是
颅内静脉流出道的体内数据,从58例搏动性耳鸣患者(PT)收集。在
在这些领土上,流动的脉动性相对较小,但几何复杂,具有明显的涡度。
最后,我们有来自148例颅内动脉瘤(IA)患者的4D流数据。使用这些现有数据集,
我们提出了一个增量进程,以开发提高4D流量分辨率的高级方法。
有令人信服的证据表明,血液动力学参数在确定
血管疾病进展的进化和对治疗的反应。原则上,4D流MRI可用于
在三维和心脏周期中确定速度场。但是,使用可接受的
获取时间,鉴于较小的口径,该分辨率不足以用于可靠的速度映射
颅内血管。特定于患者的计算和实验模型可以提供卓越的分辨率,但
它们的准确性取决于建模简化和假设。我们建议解决当前
通过开发基于深度学习的超分辨率方法来限制4D流图像。在这种方法中,
脑血管中的流将使用4D流MRI成像,并使用患者特定的计算模拟
流体动力学(CFD)。
在这项研究中,我们将首先生成患者特异性数据中血液动力学的3D CFD模拟。然后,我们会的
使用CFD数据开发超分辨率神经网络,以提供更高的分辨率4D流数据。成功的
该项目的完成将提供一个评估工具,该工具已得到验证,以改善量化的量化
脑血液动力学。这样的工具可用于进行介入和改善患者
成果直接支持国家心脏,肺和血液研究所任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yan Wang其他文献
Computational Study of intermolecular formal oxa-[3+3] cycloaddition reactions
分子间形式氧杂[3 3]环加成反应的计算研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
De-Cai Fang;Ruo-Zhuang Liu;Yan Wang - 通讯作者:
Yan Wang
Aligned 2-D Nanosheet Cu2O Film: Oriented Deposition on Cu Foil and Its Photoelectrochemical Property
定向二维纳米片 Cu2O 薄膜:铜箔上的定向沉积及其光电化学性能
- DOI:
10.1021/jp807219u - 发表时间:
2008-11 - 期刊:
- 影响因子:3.7
- 作者:
Lili Ma;Enke Wang;Yulin Lin;Yan Wang;Ying Yu;Jialin Li;Mingqiang Qiu - 通讯作者:
Mingqiang Qiu
Yan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yan Wang', 18)}}的其他基金
Oral microbiome establishment and development of Latinx Children at the US-Mexico border
美墨边境拉丁裔儿童口腔微生物群的建立和发展
- 批准号:
10644580 - 财政年份:2023
- 资助金额:
$ 12.11万 - 项目类别:
Real-Time and Long-Term Effects of Medical Marijuana on Older Adults: A Prospective Cohort Study
医用大麻对老年人的实时和长期影响:一项前瞻性队列研究
- 批准号:
10365158 - 财政年份:2022
- 资助金额:
$ 12.11万 - 项目类别:
Real-time and long-term effects of medical marijuana on older adults: A prospective cohort study Administrative Supplement
医用大麻对老年人的实时和长期影响:一项前瞻性队列研究 行政补充
- 批准号:
10671130 - 财政年份:2022
- 资助金额:
$ 12.11万 - 项目类别:
Real-Time and Long-Term Effects of Medical Marijuana on Older Adults: A Prospective Cohort Study
医用大麻对老年人的实时和长期影响:一项前瞻性队列研究
- 批准号:
10560636 - 财政年份:2022
- 资助金额:
$ 12.11万 - 项目类别:
A wrist biosensor-based mHealth suite to support alcohol intervention in young people living with HIV
基于腕部生物传感器的移动医疗套件,支持对感染艾滋病毒的年轻人进行酒精干预
- 批准号:
10678994 - 财政年份:2021
- 资助金额:
$ 12.11万 - 项目类别:
A wrist biosensor-based mHealth suite to support alcohol intervention in young people living with HIV
基于腕部生物传感器的移动医疗套件,支持对感染艾滋病毒的年轻人进行酒精干预
- 批准号:
10304696 - 财政年份:2021
- 资助金额:
$ 12.11万 - 项目类别:
相似国自然基金
主动脉瓣介导的血流模式致升主动脉重构的4D Flow MRI可视化预测模型研究
- 批准号:82071991
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
基于4D Flow MRI探讨侧支循环影响颈内动脉重塑的机制研究
- 批准号:81801139
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
4D PC-MRI血流动力学参数与主动脉夹层假腔血栓化的关系及模拟预测研究
- 批准号:81770474
- 批准年份:2017
- 资助金额:55.0 万元
- 项目类别:面上项目
基于4D血流MRI成像的左心房室流场变化介导的炎症反应在房颤心肌纤维化中的始动作用及机制研究
- 批准号:81601462
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 12.11万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 12.11万 - 项目类别:
Personalized Motion Management for Truly 4D Lung Radiotherapy
真正 4D 肺部放射治疗的个性化运动管理
- 批准号:
10452607 - 财政年份:2021
- 资助金额:
$ 12.11万 - 项目类别:
Development of 4D Flow MRI for Risk Stratification of Variceal Bleeding in Cirrhosis
开发 4D Flow MRI 用于肝硬化静脉曲张出血风险分层
- 批准号:
10211545 - 财政年份:2021
- 资助金额:
$ 12.11万 - 项目类别:
Development of 4D Flow MRI for Risk Stratification of Variceal Bleeding in Cirrhosis
开发 4D Flow MRI 用于肝硬化静脉曲张出血风险分层
- 批准号:
10538641 - 财政年份:2021
- 资助金额:
$ 12.11万 - 项目类别: