Maternal Health Data Innovation and Coordination Hub
孕产妇健康数据创新与协调中心
基本信息
- 批准号:10748737
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2030-07-31
- 项目状态:未结题
- 来源:
- 关键词:AreaArtificial IntelligenceAwardBioethicsCenters of Research ExcellenceClinicalCollaborationsCommon Data ElementCommunicationCommunitiesDataData AnalysesData CollectionData ScienceData SetData Storage and RetrievalDevelopmentDocumentationEquityEvaluationFAIR principlesFamilyFosteringFundingGenerationsGoalsHumanInformaticsInfrastructureIngestionKnowledgeMachine LearningMaternal HealthMedicalMentorshipMethodsObservational StudyOntologyOutcomePatientsPeer ReviewPopulation HeterogeneityPregnancy OutcomePreparationProcessPublic Health SchoolsRecommendationRegistriesReportingReproducibilityResearchResearch Project GrantsResearch SupportResourcesScholarshipSecureSecuritySiteSpecialistStandardizationStatistical Data InterpretationTechniquesTerminologyTrainingUnited States National Institutes of HealthUniversitiesVisioncareer developmentcloud baseddata hubdata integrationdata modelingdata repositorydata reusedata sharingexperiencehealth datahealth disparityhealth economicshealth equityimplementation scienceimprovedinnovationinterestmedical schoolsmultidisciplinaryopen sourcepatient safetyprecision medicineprogramsquality assurancerepositoryskillssymposiumtoolweb site
项目摘要
Project Summary
The Johns Hopkins University (JHU) seeks to strengthen the coordination of innovative research and practice
efforts in maternal health through collaboration with the National Institutes of Health (NIH) and
their Implementing a Maternal Health and Pregnancy Outcomes Vision for Everyone (IMPROVE) initiative
grantees. The overarching goals of this project are to establish and maintain a Maternal Health Data Innovation
and Coordination Hub to support Maternal Health Research Centers of Excellence, and to facilitate the reuse
of the data they generate. The project will be implemented by a multidisciplinary team of maternal health
experts and biostatisticians at JHU’s Bloomberg School of Public Health, and informatics and data science
specialists at JHU’s School of Medicine, with support from an Experts’ Bureau comprised of subject matter
experts in health equity, bioethics, health economics, patient safety, patient and family engagement in
research. Key project activities are to establish and maintain a secure, cloud-based coordination platform with
controlled access, and a public-facing Data Hub website; develop common data elements using a modified
Delphi approach; support the use of a common data model; provide data collection and analysis tools with
integrated quality assurance workflows; provide support for statistical analyses using traditional and artificial
intelligence/machine learning techniques; prepare and share data with NIH repositories; provide technical
assistance and skills coaching, training, and professional development opportunities to Research
Centers/IMPROVE grantees. Our proposal has technical and conceptual areas of innovation. Most notably, the
proposed integration of the Data Hub with an existing research coordination platform with demonstrated
feasibility -- JHU’s Precision Medicine Analytics Platform (PMAP). It utilizes the Observational Health Data
Science and Informatics (OHDSI) open-source community and the Observational Medical Outcomes
Partnership (OMOP), employed by large NIH-funded research. OMOP is based upon standard clinical
terminologies; enables extraction, ingestion, collation of variables of interest into an observational research
registry; and has the capability for data storage, security, analysis, and transfer among participating sites. Also
innovative are the proposed training and career development opportunities, including tuition scholarships, data
challenge awards, and a mentorship program. We anticipate that these activities will lead to short-term and
intermediate outcomes (e.g. improved data science capabilities; generation of findable, accessible,
interoperable, and reusable data), which, over the long-term, will advance research to improve maternal health
outcomes and promote equity. Process and outcomes evaluations will ascertain the extent to which our project
is successfully supporting Research Centers. Data science methods and findings from research projects will be
disseminated on the Data Hub website, through reports, peer-reviewed articles, and scientific presentations.
项目摘要
约翰·霍普金斯大学(JHU)试图加强创新研究和实践的协调
通过与美国国立卫生研究院(NIH)和
他们实施孕妇健康和怀孕成果为每个人(改进)启动的愿景
大家。该项目的总体目标是建立和维护孕产妇健康数据创新
和协调枢纽,以支持孕产妇健康研究中心,并促进再利用
它们生成的数据。该项目将由Mater Health的多学科团队实施
JHU彭博公共卫生学院的专家和生物统计学家以及信息与数据科学
JHU医学院的专家,在专家局的支持下,包括主题
健康公平,生物伦理学,健康经济学,患者安全,患者和家庭参与方面的专家
研究。关键项目活动是建立和维护一个安全的,基于云的协调平台
受控访问和面向公共的数据集线器网站;使用修改后开发常见的数据元素
Delphi方法;支持使用常见数据模型;提供数据收集和分析工具
综合质量保证工作流;使用传统和人工来提供统计分析的支持
智能/机器学习技术;与NIH存储库准备并共享数据;提供技术
协助和技能教练,培训和专业发展机会
中心/改善盛大。我们的建议具有创新的技术和概念领域。最值得注意的是
提议将数据中心与现有研究协调平台的整合与已证明
可行性-JHU的Precision Medicine Analytics平台(PMAP)。它利用观察性健康数据
科学与信息学(OHDSI)开源社区以及观察性医学成果
合作伙伴关系(OMOP),由大型NIH资助的研究进行。 OMOP基于标准临床
术语;可以提取,摄入,将兴趣变量整理到考试中
注册表;并具有数据存储,安全性,分析和参与站点之间的转移功能。还
创新是拟议的培训和职业发展机会,包括学费科学,数据
挑战奖和心态计划。我们预计这些活动将导致短期和
中级结果(例如,提高数据科学能力;可访问,可访问的生成,
可互操作和可重复使用的数据),从长远来看,该数据将提高研究以改善母校健康
结果并促进公平。流程和结果评估将确定我们的项目的程度
成功支持研究中心。研究项目的数据科学方法和发现将是
通过报告,同行评审的文章和科学演示在数据中心网站上传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreea Alina Creanga其他文献
Andreea Alina Creanga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreea Alina Creanga', 18)}}的其他基金
Developing a refined comorbidity index for use in obstetric patients
开发用于产科患者的精细合并症指数
- 批准号:
10719480 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Cardiovascular Disease in Pregnancy and the Postpartum Period in Maryland
马里兰州妊娠期和产后期的心血管疾病
- 批准号:
10368078 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Cardiovascular Disease in Pregnancy and the Postpartum Period in Maryland
马里兰州妊娠期和产后期的心血管疾病
- 批准号:
10195079 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Use of a machine learning framework to predict severe maternal morbidity
使用机器学习框架来预测严重的孕产妇发病率
- 批准号:
9767258 - 财政年份:2018
- 资助金额:
$ 200万 - 项目类别:
相似国自然基金
人工智能驱动的营销模式和消费者行为研究
- 批准号:72332006
- 批准年份:2023
- 资助金额:165 万元
- 项目类别:重点项目
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
- 批准号:32360436
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
巴氏杀菌乳中金黄色葡萄球菌和肠毒素A风险预测和溯源的人工智能模型构建研究
- 批准号:32302241
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
制造企业人工智能工作场景下员工AI认同影响机制与员工主动行为内在机理研究
- 批准号:72362025
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
基于原子贡献与人工智能的萃取精馏溶剂分子设计研究
- 批准号:22308037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
- 批准号:
10678264 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Division of Chemical Toxicology Symposia at the 266th National ACS Meeting
第266届全国ACS会议化学毒理学研讨会分部
- 批准号:
10753870 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
- 批准号:
10713637 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Validation of artificial intelligence (AI) based software as medical device (SaMD) for retinopathy of prematurity (ROP)
验证基于人工智能 (AI) 的软件作为治疗早产儿视网膜病变 (ROP) 的医疗设备 (SaMD)
- 批准号:
10760401 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别: