Comb Light Source/Imaging spectrometer for advanced Spectral Domain Optical Coherence Tomography

用于先进谱域光学相干断层扫描的梳状光源/成像光谱仪

基本信息

  • 批准号:
    10242951
  • 负责人:
  • 金额:
    $ 19.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

There is a growing interest in the development of functional imaging with Optical Coherence Tomography (OCT). Many of these approaches to functional imaging rely on the exquisite phase sensitivity of the OCT interferometer. These include well established techniques like Doppler OCT for measuring blood flow as well as emerging applications like OCT elastography for measuring mechanical properties, and Magnetomotive OCT and Photothermal OCT for molecular imaging. Our own interest lies in the area of vibrometry. Swept laser systems are advantageous because they enable the use of Mach-Zehnder type interferometers with balanced detectors. This provides for cancelation of common mode noise, the DC component, and autocorrelation artifacts. The most advanced commercially available swept lasers also have a very long coherence length (>1 m), hence signal roll-off as a function of depth is negligible. Taken together these qualities result in images that have fewer artifacts and increased signal-to-noise with concomitant high phase stability and vibrational sensitivity. Most commercially available swept lasers suffer from instabilities in the laser sweep such that every sweep needs to be calibrated in order to maintain high phase-stability. Ourselves and others have developed methods to accomplish this, but at the expense of substantial hardware complexity and sophisticated algorithms to ensure that wavenumber as a function of time, k(t), is known precisely for each sweep. In our experience, small changes in the system, environment, and the normal aging of the laser, forces frequent “tweaking” of the system to maintain the highest phase-stability. One company has developed a swept laser, where k(t) is linear and highly reproducible. We have shown that this source provides high phase- stability without the need of the complex hardware/software algorithms. The drawback to this laser system is its limited spectral bandwidth (typically 90-95 nm) and its limited availability. On the other hand, spectrometer based systems offer high-phase stability, but typically with relatively short coherence lengths (1-3 mm) and without the advantages of balanced detection. However, they can provide wide spectral bandwidth with concomitant higher resolution while maintaining high phase-stability. Here we propose to develop a novel comb light source spectrometer based system that has all of the advantages of a swept laser system, but with the inherent phase-stability of a spectrometer based system. Aim 1: Develop a comb laser source centered at ~1300 nm, with a bandwidth of 125-150 nm, and 1024 discrete lines over ~200 nm. The coherence length of each line will be at least 8 cm, providing a 4 cm 3 dB roll-off. Aim 2: Develop an imaging spectrometer with a magnification of 0.5 that disperses the light linearly (in k) over the 200 nm bandwidth using a custom compound prism, having a line rate of 147 kHz. Aim 3: Integrate the light source and spectrometer into a balanced spectral domain OCT system, validate performance, and develop FPGA code for pipelined real-time computation of the differential signal.
光学连贯性层析成像的功能成像的发展越来越感兴趣 (OCT)。这些功能成像的方法中有许多依赖于OCT的独家阶段灵敏度 干涉仪。这些包括良好的技术,例如多普勒OCT,用于测量血流以及 新兴应用,例如用于测量机械性能的OCT弹性图和磁性OCT 和用于分子成像的光热OCT。我们自身的兴趣在于振动法。 扫掠激光系统是有利的,因为它们可以使用Mach-Zehnder类型的干涉仪 平衡探测器。这提供了取消公共模式噪声,直流组件和 自相关工件。最先进的市售激光器也有很长的 相干长度(> 1 m),因此信号滚动随深度的函数而言是可忽略的。综合这些品质 导致图像较少的伪影且随之增加的高相位稳定性增加了信噪比 和振动灵敏度。大多数市售的扫掠激光器都遭受激光扫荡的不稳定性 因此,为了保持高相位稳定性,需要校准每次扫描。我们自己和他人 已经开发了实现这一目标的方法,但以实质性的硬件复杂性为代价 精致的算法确保波数作为时间k(t)的函数,恰好是每种算法 扫。根据我们的经验,激光的系统,环境和正常老化的力量很小 通常“调整”系统以保持最高的相位稳定性。一家公司已经发展了 激光,其中k(t)是线性且高度可重现的。我们已经表明,该来源提供了高相 - 稳定性无需复杂的硬件/软件算法。该激光系统的缺点是 其有限的光谱带宽(通常为90-95 nm)及其有限的可用性。另一方面, 基于光谱仪的系统具有高音稳定性,但通常具有相对较短的相干长度(1-3 mm),没有平衡检测的优势。但是,它们可以提供宽光谱带宽 在维持高相位稳定性的同时,伴随着更高的分辨率。 在这里,我们建议开发一个具有所有优点的基于梳子光源光谱仪的系统 扫描激光系统,但具有基于光谱仪的系统的继承相位稳定性。目标1:开发一个 梳子激光源以〜1300 nm为中心,带宽为125-150 nm,1024个离散线超过200行 NM。每条线的相干长度至少为8厘米,提供4厘米3 dB的滚动。目标2:开发一个 成像光谱仪的放大倍数为0.5,在200 nm上线性分散(以k)的光线 使用自定义复合棱镜的带宽,线路速率为147 kHz。目标3:整合光源 光谱仪和光谱域OCT系统,验证性能并开发FPGA代码 用于管道的差分信号实时计算。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian E. Applegate其他文献

Analysis of ear symmetry as a diagnostic tool enabled by optical coherence tomography
通过光学相干断层扫描分析耳朵对称性作为诊断工具
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zihan Yang;Wihan Kim;Marcela A. Morán;Ryan Long;J. Oghalai;Brian E. Applegate
  • 通讯作者:
    Brian E. Applegate
Visualizing motions within the cochlea's organ of Corti and illuminating cochlear mechanics with optical coherence tomography
  • DOI:
    10.1016/j.heares.2024.109154
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Elizabeth S. Olson;Wei Dong;Brian E. Applegate;Karolina K. Charaziak;James B. Dewey;Brian L. Frost;Sebastiaan W.F. Meenderink;Jong-Hoon Nam;John S. Oghalai;Sunil Puria;Tianying Ren;C. Elliott Strimbu;Marcel van der Heijden
  • 通讯作者:
    Marcel van der Heijden
Ex-vivo imaging of the human cochlea using 1.7μm SS-OCT
使用 1.7μm SS-OCT 对人类耳蜗进行离体成像
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jack C. Tang;Dorothy W. Pan;J. Oghalai;Brian E. Applegate
  • 通讯作者:
    Brian E. Applegate
Morphological and biochemical imaging of coronary atherosclerotic plaques using optical coherence tomography and fluorescence lifetime imaging
  • DOI:
    10.1016/j.carrev.2009.04.053
  • 发表时间:
    2009-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Javier A. Jo;Brian E. Applegate;Fred Clubb
  • 通讯作者:
    Fred Clubb

Brian E. Applegate的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian E. Applegate', 18)}}的其他基金

Ultra-stable, phase sensitive, snapshot OCT system enabled by 2-Photon additive manufacturing
通过 2 光子增材制造实现超稳定、相敏、快照 OCT 系统
  • 批准号:
    10607853
  • 财政年份:
    2023
  • 资助金额:
    $ 19.36万
  • 项目类别:
High-Speed, Low-Cost, Image Remapping Spectral Domain Full-Field Optical Coherence Tomography for Retinal Imaging
用于视网膜成像的高速、低成本图像重映射谱域全场光学相干断层扫描
  • 批准号:
    10670648
  • 财政年份:
    2023
  • 资助金额:
    $ 19.36万
  • 项目类别:
Comb Light Source/Imaging spectrometer for advanced Spectral Domain Optical Coherence Tomography
用于先进谱域光学相干断层扫描的梳状光源/成像光谱仪
  • 批准号:
    10058117
  • 财政年份:
    2020
  • 资助金额:
    $ 19.36万
  • 项目类别:
Optical imaging technologies to identify residual cholesteatoma and improve ossiculoplasty outcomes
光学成像技术可识别残余胆脂瘤并改善骨成形术结果
  • 批准号:
    9899243
  • 财政年份:
    2019
  • 资助金额:
    $ 19.36万
  • 项目类别:
Optical imaging technologies to identify residual cholesteatoma and improve ossiculoplasty outcomes
光学成像技术可识别残余胆脂瘤并改善骨成形术结果
  • 批准号:
    10373930
  • 财政年份:
    2019
  • 资助金额:
    $ 19.36万
  • 项目类别:
Morphological and Molecular Imaging System for in vivo Atherosclerosis Research
用于体内动脉粥样硬化研究的形态和分子成像系统
  • 批准号:
    8450783
  • 财政年份:
    2012
  • 资助金额:
    $ 19.36万
  • 项目类别:
Morphological and Molecular Imaging System for in vivo Atherosclerosis Research
用于体内动脉粥样硬化研究的形态和分子成像系统
  • 批准号:
    9039653
  • 财政年份:
    2012
  • 资助金额:
    $ 19.36万
  • 项目类别:
Morphological and Molecular Imaging System for in vivo Atherosclerosis Research
用于体内动脉粥样硬化研究的形态和分子成像系统
  • 批准号:
    8645722
  • 财政年份:
    2012
  • 资助金额:
    $ 19.36万
  • 项目类别:
Morphological and Molecular Imaging System for in vivo Atherosclerosis Research
用于体内动脉粥样硬化研究的形态和分子成像系统
  • 批准号:
    8222478
  • 财政年份:
    2012
  • 资助金额:
    $ 19.36万
  • 项目类别:
Development of high-resolution molecular imaging of endogenous chromophores with
内源性发色团高分辨率分子成像的发展
  • 批准号:
    7845631
  • 财政年份:
    2009
  • 资助金额:
    $ 19.36万
  • 项目类别:

相似国自然基金

高吞吐低时延的多元LDPC码译码算法及其软件架构研究
  • 批准号:
    62301029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
深度学习中的流形优化问题:算法设计与求解软件包的开发
  • 批准号:
    12301408
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
  • 批准号:
    22373112
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
机理与数据耦合驱动的AI赋能工业软件理论与算法
  • 批准号:
    52335001
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
面向量子模拟算法的量子软件优化技术研究
  • 批准号:
    62302395
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
  • 批准号:
    10735564
  • 财政年份:
    2023
  • 资助金额:
    $ 19.36万
  • 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
  • 批准号:
    10810913
  • 财政年份:
    2023
  • 资助金额:
    $ 19.36万
  • 项目类别:
Wearable Wireless Respiratory Monitoring System that Detects and Predicts Opioid Induced Respiratory Depression
可穿戴无线呼吸监测系统,可检测和预测阿片类药物引起的呼吸抑制
  • 批准号:
    10784983
  • 财政年份:
    2023
  • 资助金额:
    $ 19.36万
  • 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
  • 批准号:
    10712793
  • 财政年份:
    2023
  • 资助金额:
    $ 19.36万
  • 项目类别:
A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
  • 批准号:
    10643313
  • 财政年份:
    2023
  • 资助金额:
    $ 19.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了